对于Colmap的三个文件讲解

本文详细介绍了Colmap进行稀疏重建时生成的三个关键文件——points3D.txt, images.txt, 和cameras.txt的内容和结构。points3D.txt包含三维点坐标、颜色信息及投影误差;images.txt记录了图像的四元数、平移向量等信息;cameras.txt则描述了相机参数如内参、图像尺寸等。通过对这些文件的理解,可以更好地掌握Colmap的重建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当使用Colmap进行稀疏重建时,会生成一下三个文件。

依次对每个文件进行介绍:

1、points3D.txt

# 3D point list with one line of data per point:
#   POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)
# Number of points: 750, mean track length: 2.9506666666666668
1 2.4828681030642312 -5.0682527653218825 29.777528391988987 99 117 90 0.28006835886839493 1 85 3 58 2 64
393 -5.1319171487367123 2.8186788299391412 15.199595828661161 162 158 157 0.82049755044180017 1 2109 3 4269 2 4818

 POINT3D_ID:三维点的id (二维点可以根据此id找到图片对应的三维点) 

X, Y, Z:三维点坐标

R, G, B:三维点颜色信息

ERROR:投影误差(基于像素)

TRACK[] as (IMAGE_ID, POINT2D_IDX):对应images.txt里的图像id,以及每张图你对应特征点的id。比如说上面:1 85 3 58 2 64,意思是图片ID为1的对应images.txt里面的第85个点,ID为3的对应images.txt里面的第58个点,ID为2的对应images.txt里面的第64个点,这三个点是对应三张图的特征点,这三个点都映射到这个三维点。

 

看上图黑色是二维图片的数据,通过代码遍历出来,,第一列是对应点的ID ,第二列,第三列对应的是图像二维坐标,第四列对应的是三维点的ID。白色部分是points3D.txt里的数据,通过对比,查看白色倒数第二行数据,发现750对应的图片ID为1的二维点ID为11012,刚好对应上,那么此时二维点(4282.31 2555.35)对应的三维点是(4.4189599276293423 4.2638932551533149 16.150506265050332 )。

2、images.txt

# Image list with two lines of data per image:
#   IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME
#   POINTS2D[] as (X, Y, POINT3D_ID)

IMAGE_ID:图像ID

QW, QX, QY, QZ:四元素

TX, TY, TZ:平移向量

CAMERA_ID:相机的ID

NAME:图片的名字

 四元素转换为旋转矩阵课参考:(3条消息) Cesium中的相机—四元素_云上飞47636962的博客-CSDN博客

3.cameras.txt 

# Camera list with one line of data per camera:
# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]
# Number of cameras: 1
1 PINHOLE 5472 3078 3606.6260092760231 3554.1046035895465 2736 1539

CAMERA_ID:相机ID

 MODEL:相机名字

WIDTH:图像宽度

HEIGHT:图像高度

PARAMS[]:对应相机内参依次:(fx=fy),cx,cy;

### 如何合并两个 COLMAP 文件 在实际应用中,可能需要将多个 COLMAP 数据集(例如 sparse 和 dense reconstructions)合并为一个完整的数据集。以下是实现这一目标的具体方法: #### 使用 `colmap` 命令行工具 COLMAP 提供了一个命令行接口,可以通过脚本化的方式操作其数据库和重建文件夹。要合并两个 COLMAP 数据集,通常涉及以下几个方面的工作流[^3]。 1. **导入原始数据** 首先,确保每个 COLMAP 数据集中都包含了完整的稀疏重建结果(即 `.bin` 格式的 cameras, images, points)。假设已有两个独立的稀疏重建文件夹分别为 `reconstruction_1` 和 `reconstruction_2`。 2. **创建新的 COLMAP 项目** 创建一个新的工作目录用于存储合并后的结果,并初始化一个新的 COLMAP 数据库: ```bash mkdir merged_reconstruction colmap database_creator --database_path merged_reconstruction/database.db ``` 3. **导入图像列表** 将来自两个不同项目的图像路径添加到同一个数据库中: ```bash colmap image_importer \ --image_path path_to_images_from_project_1:path_to_images_from_project_2 \ --database_path merged_reconstruction/database.db \ --camera_model SIMPLE_PINHOLE ``` 4. **特征提取与匹配** 对所有图像重新进行特征点检测和描述符提取,并执行两两匹配: ```bash colmap feature_extractor --database_path merged_reconstruction/database.db --image_path combined_image_folder colmap exhaustive_matcher --database_path merged_reconstruction/database.db ``` 5. **加载现有稀疏重建** 如果希望保留原有的稀疏重建而不完全依赖新计算的结果,则可以直接读取现有的二进制文件并将它们写入当前会话下的 SQLite 数据库中。这一步骤需要用到 Python 脚本来解析 `.bin` 文件并将其转换为 SQL 插入语句。 6. **增量式 BA (Bundle Adjustment)** 执行一次全局束调整优化整个系统的几何一致性: ```bash colmap mapper \ --database_path merged_reconstruction/database.db \ --image_path combined_image_folder \ --output_path merged_reconstruction/sparse ``` 7. **验证与导出** 完成上述步骤后,可以打开 GUI 查看最终效果或者进一步运行密集重建阶段生成深度贴图等附加产物。 --- #### 自动化脚本建议 由于手动逐条指令较为繁琐,推荐编写 Shell/Bash/Powershell 或更高层次编程语言如 Python 的自动化脚本来封装以上逻辑链路。这样不仅提高了效率还减少了人为失误的可能性。 ```python import subprocess def merge_colmap_projects(project_dirs, output_dir): """Merge multiple COLMAP projects into one.""" # Initialize new DB & import images from all sources. db_file = f"{output_dir}/database.db" img_paths = ":".join([f"{d}/images" for d in project_dirs]) subprocess.run(["colmap", "database_creator", "--database_path", db_file], check=True) subprocess.run([ "colmap", "image_importer", "--image_path", img_paths, "--database_path", db_file, "--camera_model", "SIMPLE_RADIAL"], check=True) # Feature extraction and matching across datasets. subprocess.run(["colmap", "feature_extractor", "--database_path", db_file, "--image_path", output_dir+"/images"], check=True) subprocess.run(["colmap", "exhaustive_matcher", "--database_path", db_file], check=True) # Incremental mapping with bundle adjustment. subprocess.run([ "colmap", "mapper", "--database_path", db_file, "--image_path", output_dir+"/images", "--output_path", output_dir+"/sparse"], check=True) # Example usage: merge_colmap_projects(['/path/to/project1', '/path/to/project2'], './merged_output') ``` 此函数接受源项目路径数组以及期望的目标位置作为参数调用即可完成自动化的多工程融合任务。 --- #### 注意事项 - 当前方案假定各子集间存在一定的重叠区域以便建立共同参照系;否则需额外指定初始变换关系。 - 特征匹配质量直接影响后续拼接精度,故可考虑采用自定义策略筛选高质量对应点对提升稳定性[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值