INS 时间更新

4 时间更新

下式是位置、速度、姿态的误差方程式,详细的推导可参考严恭敏的《捷联惯导算法与组合导航原理讲义》
δ λ ˙ = v E s e c L t a n L R N h δ L − v E s e c L R N h 2 δ h + s e c L R N h δ v E δ L ˙ = − v N R M h 2 δ h + 1 R M h δ v N δ h ˙ = δ v U v ˙ E = [ 2 ( v N ω N + v U ω U ) + v E v N s e c 2 L R N h ] δ L + v E ( v U − v N t a n L ) R N h 2 δ h + v N t a n L − v U R N h δ v E + ( 2 ω U + v E t a n L R N h ) δ v N − ( 2 ω N + v E R N h ) δ v U − f U ϕ N + f N ϕ U + ∇ E v ˙ N = − v E ( 2 ω N + v E s e c 2 L R N h ) δ L + ( v N v U R M h 2 + v E 2 t a n L R N h 2 ) δ h − 2 ( ω U + v E t a n L R N h ) δ v E − v U R M h δ v N − v N R M h δ v U + f U ϕ E − f E ϕ U + ∇ N v ˙ U = − [ 2 ω U v E + g e s i n 2 L ( β − 4 β 1 c o s 2 L ) ] δ L − ( v E 2 R N h 2 + v N 2 R M h 2 − β 2 ) δ h + − f N ϕ E + f E ϕ N + 2 ( ω N + v E R N h ) δ v E + 2 v N R M h δ v N ∇ U ϕ ˙ E = v N R M h 2 δ h − 1 R M h δ v N + ( ω U + v E t a n L R N h ) ϕ N − ( ω N + v E R N h ) ϕ U − ε E ϕ ˙ N = − ω U δ L − v E R M h 2 δ h + 1 R N h δ v E − ( ω U + v E t a n L R N h ) ϕ E − v N R M h ϕ U − ε N ϕ ˙ U = ( ω N + v E s e c 2 L R N h ) δ L − v E t a n L R N h 2 δ h + t a n L R N h δ v E + ( ω N + v E R N h ) ϕ E + v N R M h ϕ N − ε U \begin{aligned} \delta \dot{\lambda} &= \frac{v_EsecLtanL}{R_{Nh}}\delta L - \frac{v_EsecL}{R^2_{Nh}}\delta h + \frac{secL}{R_{Nh}}\delta v_E\\ \delta \dot{L} &= - \frac{v_N}{R^2_{Mh}}\delta h + \frac{1}{R_{Mh}}\delta v_N\\ \delta \dot{h} &= \delta v_U\\ \dot{v}_E &=[2(v_N\omega_N + v_U\omega_U)+\frac{v_Ev_N sec^2L}{R_{Nh}}]\delta L +\frac{v_E(v_U-v_NtanL)}{R^2_{Nh}}\delta h+ \frac{v_NtanL - v_U}{R_{Nh}}\delta_{v_E} +(2\omega_U + \frac{v_E tanL}{R_{Nh}})\delta v_N -(2\omega_N + \frac{v_E}{R_{Nh}})\delta v_U\\ & -f_U\phi_N + f_N\phi_U +\nabla_E\\ \dot{v}_N &= -v_E(2\omega_N + \frac{v_E sec^2L}{R_{Nh}})\delta L +(\frac{v_Nv_U}{R^2_{Mh}}+\frac{v^2_EtanL}{R^2_{Nh}})\delta h - 2(\omega_U + \frac{v_E tanL}{R_{Nh}})\delta v_E -\frac{v_U}{R_{Mh}}\delta v_N - \frac{v_N}{R_{Mh}}\delta v_U + f_U\phi_E - f_E\phi_U\\ &+ \nabla_N\\ \dot{v}_U &= -[2\omega_Uv_E+g_esin2L(\beta-4\beta_1cos2L)]\delta L -(\frac{v^2_E}{R^2_{Nh}} + \frac{v^2_N}{R^2_{Mh}} - \beta_2)\delta_h+-f_N\phi_E + f_E\phi_N + 2(\omega_N + \frac{v_E}{R_{Nh}})\delta v_E +\frac{2v_N}{R_{Mh}}\delta v_N\\ &\nabla_U\\ \dot{\phi}_E &=\frac{v_N}{R_{Mh}^2}\delta h - \frac{1}{R_{Mh}}\delta v_N+ (\omega_U+\frac{v_E tanL}{R_{Nh}})\phi_N - (\omega_N + \frac{v_E}{R_{Nh}})\phi_U - \varepsilon_E\\ \dot{\phi}_N &= - \omega_U\delta L -\frac{v_E}{R^2_{Mh}}\delta h + \frac{1}{R_{Nh}}\delta v_E -(\omega_U+\frac{v_E tanL}{R_{Nh}})\phi_E -\frac{v_N}{R_{Mh}}\phi_U-\varepsilon_N\\ \dot{\phi}_U &= (\omega_N+\frac{v_E sec^2L}{R_{Nh}})\delta L -\frac{v_EtanL}{R^2_{Nh}}\delta h+ \frac{tanL}{R_{Nh}}\delta v_E + (\omega_N+\frac{v_E}{R_{Nh}})\phi_E +\frac{v_N}{R_{Mh}}\phi_N - \varepsilon_U\\ \end{aligned} δλ˙δL˙δh˙v˙Ev˙Nv˙Uϕ˙Eϕ˙Nϕ˙U=RNhvEsecLtanLδLRNh2vEsecLδh+RNhsecLδvE=RMh2vNδh+RMh1δvN=δvU=[2(vNωN+vUωU)+RNhvEvNsec2L]δL+RNh2vE(vUvNtanL)δh+RNhvNtanLvUδvE+(2ωU+RNhvEtanL)δvN(2ωN+RNhvE)δvUfUϕN+fNϕU+E=vE(2ωN+RNhvEsec2L)δL+(RMh2vNvU+RNh2vE2tanL)δh2(ωU+RNhvEtanL)δvERMhvUδvNRMhvNδvU+fUϕEfEϕU+N=[2ωUvE+gesin2L(β4β1cos2L)]δL(RNh2vE2+RMh2vN2β2)δh+fNϕE+fEϕN+2(ωN+RNhvE)δvE+RMh2vNδvNU=RMh2vNδhRMh1δvN+(ωU+RNhvEtanL)ϕN(ωN+RNhvE)ϕUεE=ωUδLRMh2vEδh+RNh1δvE(ωU+RNhvEtanL)ϕERMhvNϕUεN=(ωN+RNhvEsec2L)δLRNh2vEtanLδh+RNhtanLδvE+(ωN+RNhvE)ϕE+RMhvNϕNεU
将上式采用矩阵的形式可以写作:
δ x ˙ ( t ) = F ( t ) δ x ( t ) \begin{aligned} \delta\dot{\mathbf{x}}(t) = \mathbf{F}(t)\delta \mathbf{x}(t) \end{aligned} δx˙(t)=F(t)δx(t)

其中, F \mathbf{F} F的具体形式可以参见下表。

\ δ λ \delta\lambda δλ δ L \delta L δL δ h \delta h δh δ v E \delta v_E δvE δ v N \delta v_N δvN δ v U \delta v_U δvU δ ϕ p i t c h \delta\phi_{pitch} δϕpitch δ ϕ r o l l \delta\phi_{roll} δϕroll δ ϕ y a w \delta\phi_{yaw} δϕyaw
δ λ ˙ \delta\dot{\lambda} δλ˙ v E s e c L t a n L R N h \frac{v_EsecLtanL}{R_{Nh}} RNhvEsecLtanL − v E s e c L R N h 2 -\frac{v_E secL}{R_{Nh}^{2}} RNh2vEsecL s e c L R N h \frac{secL}{R_{Nh}} RNhsecL
δ L ˙ \delta\dot{L} δL˙ − v n R M h 2 -\frac{v_n}{R_{Mh}^{2}} RMh2vn 1 R M h \frac{1}{R_{Mh}} RMh1
δ h ˙ \delta\dot{h} δh˙1
δ v E ˙ \delta\dot{v_E} δvE˙ 2 ( v N ω N + v U ω U ) + v E v N s e c 2 L R N h 2(v_N\omega_N+v_U\omega_U)+\frac{v_Ev_Nsec^2L}{R_{Nh}} 2(vNωN+vUωU)+RNhvEvNsec2L v E v U − v E v n t a n λ R N h 2 \frac{v_Ev_U-v_Ev_ntan\lambda}{R_{Nh}^2} RNh2vEvUvEvntanλ v N t a n L − v U R N h \frac{v_NtanL-v_U}{R_{Nh}} RNhvNtanLvU 2 ω U + v E t a n L R N h 2\omega_U+\frac{v_EtanL}{R_{Nh}} 2ωU+RNhvEtanL − ( 2 ω N + v E R N h ) -(2\omega_N+\frac{v_E}{R_{Nh}}) (2ωN+RNhvE) − f U -f_U fU f N f_N fN
δ v N ˙ \delta\dot{v_N} δvN˙ − v E ( 2 ω N + v E s e c 2 L R N h ) -v_E(2\omega_N+\frac{v_Esec^2L}{R_{Nh}}) vE(2ωN+RNhvEsec2L) v N v U R M h 2 + v E 2 t a n L R N h 2 \frac{v_Nv_U}{R_{Mh}^2}+\frac{v_E^2tanL}{R_{Nh}^2} RMh2vNvU+RNh2vE2tanL 2 ( ω U + v E t a n L R N h ) 2(\omega_U+\frac{v_EtanL}{R_{Nh}}) 2(ωU+RNhvEtanL) − v U R M h -\frac{v_U}{R_{Mh}} RMhvU − v N R M h -\frac{v_N}{R_{Mh}} RMhvN − f U -f_U fU − f E -f_E fE
δ v ˙ U \delta\dot{v}_U δv˙U − 2 ω U v E -2\omega_Uv_E 2ωUvE − ( v E 2 R N h 2 + v N 2 R M h 2 ) -(\frac{v_E^2}{R_{Nh}^2}+\frac{v_N^2}{R_{Mh}^2}) (RNh2vE2+RMh2vN2) 2 ( ω N + v E R N h ) 2(\omega_N+\frac{v_E}{R_{Nh}}) 2(ωN+RNhvE) 2 v N R M h \frac{2v_N}{R_{Mh}} RMh2vN − f N -f_N fN f E f_E fE
δ ϕ ˙ E \delta\dot{\phi}_E δϕ˙E v N R M h 2 \frac{v_N}{R_{Mh}^2} RMh2vN − 1 R M h -\frac{1}{R_{Mh}} RMh1 ω U + v E t a n L R N h \omega_U+\frac{v_EtanL}{R_{Nh}} ωU+RNhvEtanL − ( ω N + v E R N h ) -(\omega_N+\frac{v_E}{R_{Nh}}) (ωN+RNhvE)
δ ϕ ˙ N \delta\dot{\phi}_N δϕ˙N ω U \omega_U ωU v E R M h 2 \frac{v_E}{R_{Mh}^2} RMh2vE 1 R M h \frac{1}{R_{Mh}} RMh1 − ( ω U + v E t a n L R N h ) -(\omega_U+\frac{v_EtanL}{R_{Nh}}) (ωU+RNhvEtanL) − v N R M h -\frac{v_N}{R_{Mh}} RMhvN
δ ϕ ˙ U \delta\dot{\phi}_U δϕ˙U ω U + v E t a n L R N h \omega_U+\frac{v_EtanL}{R_{Nh}} ωU+RNhvEtanL v E t a n L R M h 2 \frac{v_EtanL}{R_{Mh}^2} RMh2vEtanL t a n L R N h \frac{tanL}{R_{Nh}} RNhtanL ω N + v E R N h \omega_N+\frac{v_E}{R_{Nh}} ωN+RNhvE v N R M h \frac{v_N}{R_{Mh}} RMhvN1
续表 a b i a s x abias_x abiasx a b i a s y abias_y abiasy a b i a s z abias_z abiasz g b i a s x gbias_x gbiasx g b i a s y gbias_y gbiasy g b i a s z gbias_z gbiasz
δ λ ˙ \delta\dot{\lambda} δλ˙
δ L ˙ \delta\dot{L} δL˙
δ H ˙ \delta\dot{H} δH˙
δ v ˙ E \delta\dot{v}_E δv˙E c 11 c_{11} c11 c 12 c_{12} c12 c 13 c_{13} c13
δ v ˙ N \delta\dot{v}_N δv˙N c 21 c_{21} c21 c 22 c_{22} c22 c 23 c_{23} c23
δ v ˙ U \delta\dot{v}_U δv˙U c 31 c_{31} c31 c 32 c_{32} c32 c 33 c_{33} c33
δ ϕ ˙ E \delta\dot{\phi}_E δϕ˙E − c 11 -c_{11} c11 − c 12 -c_{12} c12 − c 13 -c_{13} c13
δ ϕ ˙ N \delta\dot{\phi}_N δϕ˙N − c 21 -c_{21} c21 − c 22 -c_{22} c22 − c 23 -c_{23} c23
δ ϕ ˙ U \delta\dot{\phi}_U δϕ˙U − c 31 -c_{31} c31 − c 32 -c_{32} c32 − c 33 -c_{33} c33

进一步考虑加速度计和角速度计的测量噪声和加速度计零偏角速度计零偏噪声的随机模型,INS误差模型及传感器误差模型的联合形式可以进一步表达为:
δ x ˙ ( t ) = F ( t ) δ x ( t ) + G ( t ) w ( t ) \begin{aligned} \delta\dot{\mathbf{x}}(t) = \mathbf{F}(t)\delta \mathbf{x}(t) + \mathbf{G}(t)\mathbf{w}(t) \end{aligned} δx˙(t)=F(t)δx(t)+G(t)w(t)
其中,噪声向量依次为加速度计测量噪声、角速度计测量噪声、加速度计零偏噪声,角速度计零偏噪声为:
w = [ w a T , w g T , w a b T , w g b T ] T \begin{aligned} \mathbf{w} = [\mathbf{w}^T_a, \mathbf{w}^T_g, \mathbf{w}^T_{ab}, \mathbf{w}^T_{gb}]^T \end{aligned} w=[waT,wgT,wabT,wgbT]T
噪声向量的设计矩阵为:
G = [ 0 0 0 0 C b n 0 0 0 0 C b n 0 0 0 0 I 0 0 0 0 I ] \begin{aligned} \mathbf{G}=\begin{bmatrix} 0 & 0 & 0 & 0\\ \mathbf{C}_b^n & 0 & 0 & 0\\ 0 & \mathbf{C}_b^n & 0 & 0\\ 0 & 0 & \mathbf{I} & 0\\ 0 & 0 & 0 & \mathbf{I}\\ \end{bmatrix} \end{aligned} G= 0Cbn00000Cbn00000I00000I

w \mathbf{w} w为噪声向量。 w ( t ) \mathbf{w}(t) w(t)的元素为白噪声,其协方差阵为: E [ w ( t ) w ( τ ) T ] = Q ( t ) δ ( t − τ ) \begin{aligned} E[\mathbf{w}(t)\mathbf{w}(\tau)^T] = \mathbf{Q}(t)\delta(t-\tau) \end{aligned} E[w(t)w(τ)T]=Q(t)δ(tτ)由于捷联惯导系统一般使用高频离散采样数据,因此需要将方程转化为离散的形式:
δ x ( t k + 1 ) = Φ ( t k + 1 , t k ) δ x ( t k ) + G ( τ ) w ( τ ) d τ \begin{aligned} \delta \mathbf{x}(t_{k+1}) = \Phi(t_{k+1},t_k)\delta \mathbf{x}(t_k) + \mathbf{G}(\tau)\mathbf{w}(\tau)d\tau \end{aligned} δx(tk+1)=Φ(tk+1,tk)δx(tk)+G(τ)w(τ)dτ Φ k \Phi_k Φk称为状态转移矩阵。

如果 △ t k + 1 = t k + 1 − t k \triangle t_{k+1} = t_{k+1} -t_k tk+1=tk+1tk很小,因此在这段时间内可以认为 F ( t ) F(t) F(t)为常量。转移矩阵的近似计算方法如下:
Φ k = e x p ( F ( t ) △ t k + 1 ) ≈ I + F ( t ) △ t k + 1 \Phi_k = exp(F(t)\triangle t_{k+1})\approx I+F(t)\triangle t_{k+1} Φk=exp(F(t)tk+1)I+F(t)tk+1状态时间更新对应的协方差更新为:
Q δ x ( t k + 1 ) = Φ ( t k + 1 , t k ) Q δ x ( t k ) Φ T ( t k + 1 + G ( τ ) Q w ( τ ) d τ G T ( τ ) \begin{aligned} Q_{\delta \mathbf{x}(t_{k+1})} = \Phi(t_{k+1},t_k)Q_{\delta \mathbf{x}(t_k)}\Phi^T(t_{k+1} + \mathbf{G}(\tau)Q_{\mathbf{w}(\tau)d\tau}\mathbf{G}^T(\tau) \end{aligned} Qδx(tk+1)=Φ(tk+1,tk)Qδx(tk)ΦT(tk+1+G(τ)Qw(τ)dτGT(τ)使用式子(1.6)和(1.8)即可完成时间更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值