多元函数极值问题可以分为以下三个方面
- 无约束极值问题
- 等式约束条件极值问题
- 不等式约束条件极值问题
无约束条件的多元函数极值
问题描述:假设多元函数
对其所有自变量都连续,且具有连续的一阶和二阶连续偏导数,将所有自变量
记为向量
的形式,则问题被描述为求
,使得
时,
本文探讨了多元函数极值的三个主要方面:无约束条件、等式约束条件和不等式约束条件的极值问题。针对无约束条件,解释了函数极小值的定义和必要条件。对于含有等式约束的极值问题,介绍了拉格朗日乘子法。最后,阐述了不等式约束条件下极值问题的KKT定理。
多元函数极值问题可以分为以下三个方面
问题描述:假设多元函数
对其所有自变量都连续,且具有连续的一阶和二阶连续偏导数,将所有自变量
记为向量
的形式,则问题被描述为求
,使得
时,

被折叠的 条评论
为什么被折叠?