Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry

Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry
点云地图虽然易于构建,但是难以表征具有不确定性的观测和特征。不同激光由于分辨率和扫描方式不同,对于环境特征的感知存在较大差距。本文提出来一种自适应体素建图方法,基于不同大小的体素存储环境平面特征的参数和不确定度。
本文的主要贡献如下:
1、自适应的多尺度体素地图构建方法。
2、基于概率的地图表达方法
在这里插入图片描述

在这里插入图片描述

概率平面表达

基于激光测量误差和位姿估计误差计算世界坐标系下点的误差,基于平面法向量估计方式估计法向量的误差。

由粗到细的体素地图构建方法

地图由哈希表和八叉树构成,哈希表管理最上层的地图结构,八叉树每个节点中存放一个平面,如果一个节点中的点不能被表示为一个特征,拆分这个节点。
后续地图的点被送到对应的节点中,在面特征稳定后删除旧的观测,只保留最新观测,如果新的观测和旧的观测冲突,删去旧估计重写估计位姿。

基于卡尔曼滤波的定位方法

根据平面和点的不确定度,采用和FAST-LIO2相似的方法进行地图构建。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值