YoLov1、YoLov2、YoLov3损失公式介绍

YOLO LOSS系列

YOLO V1

YOLOv1 Loss Function

YOLOv1的总损失函数是坐标预测损失尺寸预测损失物体置信度预测损失以及类别预测损失的组合:

L = λ coord ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj [ ( x i − x ^ i ) 2 + ( y i − y ^ i ) 2 ] \mathcal{L} = \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] L=λcoordi=0S2j=0B1ijobj[(xix^i)2+(yiy^i)2]
+ λ coord ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj [ ( w i − w ^ i ) 2 + ( h i − h ^ i ) 2 ] + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 \right] +λcoordi=0S2j=0B1ijobj[(wi w^i )2+(hi h^i )2]
+ ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj ( C i − C ^ i ) 2 + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} (C_i - \hat{C}_i)^2 +i=0S2j=0B1ijobj(CiC^i)2
+ λ noobj ∑ i = 0 S 2 ∑ j = 0 B 1 i j noobj ( C i − C ^ i ) 2 + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} (C_i - \hat{C}_i)^2 +λnoobji=0S2j=0B1ijnoobj(CiC^i)2
+ ∑ i = 0 S 2 1 i obj ∑ c ∈ classes ( p i ( c ) − p ^ i ( c ) ) 2 + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 +i=0S21iobjcclasses(pi(c)p^i(c))2

  • S 2 S^{2} S2:将图像分割成的单元格数量。

  • B B B:每个单元格预测的边界框数量

  • 1 i j obj \mathbb{1}_{ij}^{\text{obj}} 1ijobj :表示第 i i i 个单元格中的第 j j j 个边界框是否包含对象。

  • 1 i obj \mathbb{1}_{i}^{\text{obj}} 1iobj :表示第 i i i 个单元格是否包含对象。

  • 1 i j noobj \mathbb{1}_{ij}^{\text{noobj}} 1ijnoobj :表示第 i i i 个单元格中的第 j j j 个边界框是否不包含对象。

  • λ coord \lambda_{\text{coord}} λcoord :调节因子,是一个大于1的常数,用来增加位置和尺寸损失的权重。

  • λ noobj \lambda_{\text{noobj}} λnoobj :调节因子,是一个小于1的常数,用来减少不包含对象的边界框的置信度损失的权重。

位置损失(中心点坐标损失):

这部分损失函数计算预测的边界框的中心位置与实际边界框中心位置的差异。
λ coord ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj [ ( x i − x ^ i ) 2 + ( y i − y ^ i ) 2 ] \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] λcoordi=0S2j=0B1ijobj[(xix^i)2+(yiy^i)2]

x, y: 在YOLOv1中,x和y表示边界框中心相对于所在网格单元(grid cell)的偏移。这些偏移值是在0到1之间的,因为边界框的中心总是落在其所属的网格单元内。

尺寸损失(宽和高损失):

这部分损失函数计算预测的边界框的尺寸与实际边界框的尺寸的差异。
λ coord ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj [ ( w i − w ^ i ) 2 + ( h i − h ^ i ) 2 ] \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 \right] λcoordi=0S2j=0B1ijobj[(wi w^i )2+(hi h^i )2]

w, h: 在YOLOv1中, w w w h h h 直接预测相对于整个图像的宽度和高度的比例。例如,如果图像的真实宽度是 500 像素,模型预测的 w w w 为 0.1,那么预测的边界框的宽度就是 50 像素。

置信度损失:

这部分损失函数计算预测的边界框内是否有对象的置信度与实际的差异。对于不包含对象的边界框(背景),其权重是 λ noobj \lambda_{\text{noobj}} λnoobj,通常小于1,因为大部分的边界框是负样本,为了平衡正负样本对损失的贡献,负样本的权重被设置得较小。
∑ i = 0 S 2 ∑ j = 0 B 1 i j obj ( C i − C ^ i ) 2 + λ noobj ∑ i = 0 S 2 ∑ j = 0 B 1 i j noobj ( C i − C ^ i ) 2 \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} (C_i - \hat{C}_i)^2+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} (C_i - \hat{C}_i)^2 i=0S2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fire丶Chicken

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值