本文是阅读了2020年3月份发布的论文3D Point Cloud Processing and Learning for Autonomous Driving 的总结,可能有不对的地方希望能够谅解。
一、背景及现状
作为现代世界最令人兴奋的工程项目之一,自动驾驶是许多研究人员和工程师的愿望。这是一个可能从根本上重新定义人类社会的未来和每个人的日常生活的目标。一旦自动驾驶技术成熟,我们将见证公共交通、基础设施和城市面貌的巨大转变。
早在2009年开始,谷歌开始了一个关于自动驾驶汽车的研究项目,后来创建了Waymo,基于他们早期的技术成功将这一成就商业化。2013-2014年前后,深度神经网络的兴起带来了计算机视觉和机器学习的革命。目前,有许多高科技公司、汽车制造商和初创公司都在从事自动驾驶技术的工作,包括苹果、Aptiv、ArgoAI、极光、百度、通用邮轮、滴滴、出租车、小马艾、特斯拉、Zoox等汽车公司,这些公司有信心在不久的将来实现SAE的L4级的目标。
SAE将自动驾驶技术分为6个等级,从L0到L5【具体分类】,目前许多公司正在实现到达L4的目标。(L2到L3是一个转变点,从人类驾驶到自动系统的转变。从L3到L4是另外的转变点,达到这种水平人类将不需要在任何环境下驾驶)
在工业中,通常自动驾驶系统会分为多个模块,整个系统经过端到端的整体训练,信息可以直接从传感器流动到最终的运动规划或者决策控制。一个自动驾驶系统通常包括传感、地图创建、定位、感知、预测、路由、运动规划和控制模块,如下图1:
<