矩阵论笔记(八)——矩阵分解

主要包括以下几种分解:

  • LU 分解(三角分解)
  • QR 分解(正交三角分解)
  • 满秩分解
  • SVD 分解(奇异值分解)

分别简介如下:

  • LU 分解

    • 简介:把方阵分解为下三角矩阵与上三角矩阵的乘积 A=LU
    • 条件: A 的前 1n1 阶顺序主子式非零,则存在唯一分解 A=LDU
    • 算法:① Gauss 消元法,② Crout 分解,③ Doolittle 分解;
    • 推论:实对称正定矩阵有 Cholesky 分解 A=GGT A=LDU=LD̃ 2U ,由 AT=A L=UT,U=LT );
    • 唯一性:唯一。
  • QR 分解

    • 简介:把方阵分解为酉矩阵与上三角矩阵的乘积 A=QR
    • 条件: A 为实/复非奇异矩阵;
    • 算法:① Schmidt 正交化;② Givens 变换;③ Householder 变换;
    • 唯一性:除去相差一个对角元素的绝对值(模)全为 1 的对角阵外,分解式唯一;
    • 推广:若 ACm×nn n 个列线性无关,则有分解 A=QR 满足 QCm×n , QHQ=I R n 阶非奇异上三角矩阵,且除去模 1 对角阵外,该分解式唯一。
  • 满秩分解

    • 简介:把任意非零矩阵分解为列满秩矩阵与行满秩矩阵的乘积 A=FG
    • 条件:任意非零矩阵 ACm×nr (r>0)
    • 算法:① 初等行变换+初等阵求逆;② 初等行变换为 Hermite 标准形+列置换矩阵;
    • 唯一性:不唯一。
  • SVD 分解

    • 简介:把任意非零矩阵分解为 A=UDV 的形式,其中 U,V m 阶和 n 阶酉矩阵, D=ΣOOO ,其中 Σ=diag(σ1,,σr) ,而 σi A 的全部非零奇异值;
    • 条件:任意非零矩阵;
    • 算法:步骤 ① 对 AHA 求谱分解得 V,Σ2 ,② U1=AV1Σ1 ,③ 构造 U2 (解方程 U1x=0 );
    • 唯一性:不唯一。

以下详细讲解。

1 LU 分解

求解线性方程组时,用初等行变换把系数化为上三角形式,这个过程可以用矩阵表示出来。

定理

(1)定理一:设 A n 阶矩阵,当且仅当(充要条件) A 的顺序主子式 Δk0, k=1,,n1 时, A 唯一地被分解为 A=LDU ,其中 L,U 分别是单位下三角阵和单位上三角阵(对角元素为 1), D=diag(d1,,dn) dk=ΔkΔk1
(2)推论一: n 阶非奇异矩阵 A 有三角分解 A=LU 的充要条件是其顺序主子式 Δk0, k=1,,n1
(3)定理二:对任意非奇异矩阵 A ,存在置换矩阵 P 使 PA n 个顺序主子式非零;
(4)推论二:对非奇异矩阵 A ,存在置换矩阵 P 使 PA=LÛ =LDU (三角分解)。

算法

(1)初等变换法: [A|I]r[U|P] , [P|I]=[I|P1] ,并令 L=P1 ,注意初等变换时要保持 P 为下三角阵。

(2)Gauss 消元法:
   ① 用倍加初等阵 L11 左乘 A 化其第一列为只有第一个元素非零;
   ② 用 L12 左乘 A(1) 化其第二列为只有前两个元素非零;
   ③ 继续直至 A 被化为上三角阵;
   ④ 令 L=L1Ln1 ,则 A=LU

(3)Crout 分解: A=(LD)U=L̂ U ,其中 U 为单位上三角阵,则:
   ① 计算 L̂  第一列: li1=ai1
   ② 计算 U 第一行: u1j=a1jl11
   ③ 计算 L̂  第二列: lik=aik(li1u1k++li,k1uk1k)
   ④ 计算 U 第二行: ukj=1

  • 0
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值