【矩阵论】2. 矩阵分解——高低分解

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


矩阵分解可以得到简化的乘积矩阵,可以简化后续的计算与处理度

在这里插入图片描述

2.5 高低分解

A = A m × n A=A_{m\times n} A=Am×n r ( A ) > 0 r(A)>0 r(A)>0 ,则有高低分解 A m × n = B m × r C r × n A_{m\times n}=B_{m\times r}C_{r\times n} Am×n=Bm×rCr×n ,其中B为列满秩序(高阵),C为行满秩(低阵)

性质

若 A = B C , 则有 A H = C H B H 若A=BC,则有 A^H=C^HB^H A=BC,则有AH=CHBH

2.5.1 高低分解方法

A = A m × n A=A_{m\times n} A=Am×n 做行变换
A ⟶ 行变换 ( I r ∗ ⋯ ⋯ 0 0 ) , r ( A ) = r , I r = ( 1 ⋱ 1 ) r × r 取出 A 中前 r 列,记为 α 1 , ⋯   , α r 令 B = ( α 1 , ⋯   , α r ) , C = ( I r , ∗ ) ,可得 A = B C \begin{aligned} &A\overset{行变换}{\longrightarrow}\left( \begin{matrix} I_r&*\\ \cdots&\cdots\\ 0&0 \end{matrix} \right),r(A)=r,I_r=\left( \begin{matrix} 1&&\\&\ddots&\\&&1 \end{matrix} \right)_{r\times r}取出A中前r列,记为\alpha_1,\cdots,\alpha_r\\ &令B=(\alpha_1,\cdots,\alpha_r),C=(I_r,*),可得A=BC\\ \end{aligned} A行变换 Ir00 r(A)=r,Ir= 11 r×r取出A中前r列,记为α1,,αrB=(α1,,αr),C=(Ir,),可得A=BC
eg:
A = ( 1 1 2 0 1 1 1 1 2 ) ,求高低分解 A = B C \begin{aligned} A=\left( \begin{matrix} 1&1&2\\0&1&1\\1&1&2 \end{matrix} \right),求高低分解A=BC \end{aligned} A= 101111212 ,求高低分解A=BC

A ⟶ 行变换 ( 1 0 1 0 1 1 0 0 0 ) , 令 B = ( α 1 , α 2 ) = ( 1 1 0 1 1 1 ) , C = ( 1 0 1 0 1 1 ) 得高低分解 A = B C = ( α 1 , α 2 ) = ( 1 1 0 1 1 1 ) ( 1 0 1 0 1 1 ) \begin{aligned} &A\overset{行变换}{\longrightarrow}\left( \begin{matrix} 1&0&1\\0&1&1\\0&0&0 \end{matrix} \right),令B=(\alpha_1,\alpha_2)=\left( \begin{matrix} 1&1\\0&1\\1&1 \end{matrix} \right),C=\left( \begin{aligned} \begin{matrix} 1&0&1\\0&1&1 \end{matrix} \end{aligned} \right)\\ &得高低分解A=BC=(\alpha_1,\alpha_2)=\left( \begin{matrix} 1&1\\0&1\\1&1 \end{matrix} \right)\left( \begin{aligned} \begin{matrix} 1&0&1\\0&1&1 \end{matrix} \end{aligned} \right) \end{aligned} A行变换 100010110 ,B=(α1,α2)= 101111 ,C=(100111)得高低分解A=BC=(α1,α2)= 101111 (100111)


求 A = ( 1 3 2 1 4 2 6 1 0 7 3 9 3 1 11 ) 求A=\left( \begin{matrix} 1&3&2&1&4\\ 2&6&1&0&7\\ 3&9&3&1&11\\ \end{matrix} \right) A= 1233692131014711

解 1 : A ⟶ r 3 − r 1 − r 2 ( 1 3 2 1 4 2 6 1 0 7 0 0 0 0 0 ) ⟶ r 2 − 2 r 1 ( 1 3 2 1 4 0 0 − 3 − 2 − 1 0 0 0 0 0 ) ⟶ r 1 + 4 r 2 ( 1 3 − 10 − 7 0 0 0 3 2 1 0 0 0 0 0 ) 故可取 A 中第 1 列和第 5 列作为高阵 B , C = ( 1 3 − 10 − 7 0 0 0 3 2 1 ) \begin{aligned} &解1:\\ &A\overset{r_3-r_1-r_2}{\longrightarrow}\left( \begin{matrix} 1&3&2&1&4\\ 2&6&1&0&7\\ 0&0&0&0&0 \end{matrix} \right)\overset{r_2-2r_1}{\longrightarrow}\left( \begin{matrix} 1&3&2&1&4\\ 0&0&-3&-2&-1\\ 0&0&0&0&0 \end{matrix} \right)\overset{r_1+4r_2}{\longrightarrow}\left( \begin{matrix} 1&3&-10&-7&0\\ 0&0&3&2&1\\ 0&0&0&0&0 \end{matrix} \right)\\ &故可取A中第1列和第5列作为高阵B,C=\left( \begin{matrix} 1&3&-10&-7&0\\ 0&0&3&2&1 \end{matrix} \right) \end{aligned} 1:Ar3r1r2 120360210100470 r22r1 100300230120410 r1+4r2 1003001030720010 故可取A中第1列和第5列作为高阵BC=(10301037201)

解 2 : A ⟶ r 3 − r 1 − r 2 ( 1 3 2 1 4 2 6 1 0 7 0 0 0 0 0 ) ⟶ r 2 − 2 r 1 ( 1 3 2 1 4 0 0 3 2 1 0 0 0 0 0 ) ⟶ 1 3 r 2 ( 1 3 2 1 4 0 0 1 2 3 1 3 0 0 0 0 0 ) ⟶ r 1 − 2 r 2 ( 1 3 0 − 1 3 10 3 0 0 1 2 3 1 3 0 0 0 0 0 ) , 取 A 中的第 1 , 3 列为高阵 B = ( 1 2 2 1 3 3 ) , C = ( 1 3 0 − 1 3 10 3 0 0 1 2 3 1 3 0 0 0 0 0 ) \begin{aligned} &解2:\\ &A\overset{r_3-r_1-r_2}{\longrightarrow}\left( \begin{matrix} 1&3&2&1&4\\ 2&6&1&0&7\\ 0&0&0&0&0 \end{matrix} \right)\overset{r_2-2r_1}{\longrightarrow}\left( \begin{matrix} 1&3&2&1&4\\ 0&0&3&2&1\\ 0&0&0&0&0 \end{matrix} \right)\overset{\frac{1}{3}r_2}{\longrightarrow}\left( \begin{matrix} 1&3&2&1&4\\ 0&0&1&\frac{2}{3}&\frac{1}{3}\\ 0&0&0&0&0 \end{matrix} \right)\\ &\overset{r_1-2r_2}{\longrightarrow}\left( \begin{matrix} 1&3&0&-\frac{1}{3}&\frac{10}{3}\\ 0&0&1&\frac{2}{3}&\frac{1}{3}\\ 0&0&0&0&0 \end{matrix} \right),\\ &取A中的第1,3列为高阵B=\left( \begin{matrix} 1&2\\ 2&1\\ 3&3 \end{matrix} \right),C=\left( \begin{matrix} 1&3&0&-\frac{1}{3}&\frac{10}{3}\\ 0&0&1&\frac{2}{3}&\frac{1}{3}\\ 0&0&0&0&0 \end{matrix} \right) \end{aligned} 2:Ar3r1r2 120360210100470 r22r1 100300230120410 31r2 10030021013204310 r12r2 10030001031320310310 ,A中的第1,3列为高阵B= 123213 ,C= 10030001031320310310

2.5.2 秩1分解法

若 r ( A ) = 1 , 则 A = ( α 1 ⋮ α n ) ( b 1 ⋯ b n ) = α β ,其中 α 为 A 中的非零列 若r(A)=1,则A=\left( \begin{matrix} \alpha_1\\\vdots\\\alpha_n \end{matrix} \right)\left(b_1\cdots b_n\right)=\alpha \beta,其中\alpha 为A中的非零列 r(A)=1,A= α1αn (b1bn)=αβ,其中αA中的非零列

eg

A = ( 1 − 1 2 3 2 − 2 4 6 1 − 1 2 3 ) ( 各列成比例 ) , r ( A ) = 1 A=\left( \begin{matrix} 1&-1&2&3\\ 2&-2&4&6\\ 1&-1&2&3 \end{matrix} \right)(各列成比例),r(A)=1 A= 121121242363 (各列成比例),r(A)=1

取 α = ( 1 2 1 ) , β = ( 1 − 1 2 3 ) A = B C = ( 1 2 1 ) ( 1 − 1 2 3 ) \begin{aligned} &取\alpha=\left( \begin{matrix} 1\\2\\1 \end{matrix} \right),\beta=\left( 1\quad -1\quad 2\quad 3 \right)\\ &A=BC=\left( \begin{matrix} 1\\2\\1 \end{matrix} \right)\left( 1\quad -1\quad 2\quad 3 \right) \end{aligned} α= 121 ,β=(1123)A=BC= 121 (1123)


A = ( 1 0 − i 4 2 − 1 0 i − 4 2 − 1 0 − i − 3 1 + i ) A=\left( \begin{matrix} 1&0&-i&4&2\\ -1&0&i&-4&2\\ -1&0&-i&-3&1+i \end{matrix} \right) A= 111000iii443221+i

A ⟶ r 2 + r 1 , r 3 + r 1 ( 1 0 − i 4 2 0 0 0 0 4 0 0 − 2 i 1 3 + i ) ⟶ r 2 4 , − r 3 2 i ( 1 0 − i 4 2 0 0 0 0 1 0 0 1 − 1 2 i − 3 + i 2 i ) ⟶ r 1 + i r 3 , r 1 − r 2 , r 3 − r 2 ( 1 0 0 7 2 0 0 0 0 0 1 0 0 1 − 1 2 i 0 ) , 故选第 1 , 3 , 5 列作为高阵 B 即 B = ( 1 − i 2 − 1 i 2 − 1 − i 1 + i ) , C = ( 1 0 0 7 2 0 0 0 0 0 1 0 0 1 − 1 2 i 0 ) , A = B C \begin{aligned} &A\overset{r_2+r_1,r_3+r_1}{\longrightarrow}\left( \begin{matrix} 1&0&-i&4&2\\ 0&0&0&0&4\\ 0&0&-2i&1&3+i \end{matrix} \right)\overset{\frac{r_2}{4},-\frac{r_3}{2i}}{\longrightarrow}\left( \begin{matrix} 1&0&-i&4&2\\ 0&0&0&0&1\\ 0&0&1&-\frac{1}{2i}&-\frac{3+i}{2i} \end{matrix} \right)\\ &\overset{r_1+ir_3,r_1-r_2,r_3-r_2}{\longrightarrow}\left( \begin{matrix} 1&0&0&\frac{7}{2}&0\\ 0&0&0&0&1\\ 0&0&1&-\frac{1}{2i}&0 \end{matrix} \right),故选第1,3,5列作为高阵B\\ &即B=\left( \begin{matrix} 1&-i&2\\ -1&i&2\\ -1&-i&1+i \end{matrix} \right),C=\left( \begin{matrix} 1&0&0&\frac{7}{2}&0\\ 0&0&0&0&1\\ 0&0&1&-\frac{1}{2i}&0 \end{matrix} \right),A=BC \end{aligned} Ar2+r1,r3+r1 100000i02i401243+i 4r2,2ir3 100000i01402i1212i3+i r1+ir3,r1r2,r3r2 1000000012702i1010 ,故选第1,3,5列作为高阵BB= 111iii221+i ,C= 1000000012702i1010 ,A=BC

2.5.3 高阵低阵的逆

a. 高阵的左逆

B = B m × r B=B_{m\times r} B=Bm×r (列无关) 为高阵,则有左逆公式 B L = ( B H B ) − 1 B H B_L=(B^HB)^{-1}B^H BL=(BHB)1BH ,使 B L B = I r B_LB=I_r BLB=Ir ,其中 B L = B r × m B_L=B_{r\times m} BL=Br×m

证明:
先证 B H B 可逆, r ( B H B ) = r ( B ) = r ( 列向量极大无关组元素 ) B H B 为 r 阶方针,且秩为 r ,故 B H B 一定可逆 ⇒ ( B H B ) − 1 存在 再证 B L B = ( B H B ) − 1 B H B = I r \begin{aligned} &先证 B^HB可逆,r(B^HB)=r(B)=r(列向量极大无关组元素)\\ &B^HB为r阶方针,且秩为r,故B^HB一定可逆\Rightarrow (B^HB)^{-1}存在\\ &再证B_LB=(B^HB)^{-1}B^HB=I_r \end{aligned} 先证BHB可逆,r(BHB)=r(B)=r(列向量极大无关组元素)BHBr阶方针,且秩为r,故BHB一定可逆(BHB)1存在再证BLB=(BHB)1BHB=Ir
性质:

  • 高阵消去法:

    B B B 为高阵,且 B X = B Y BX=BY BX=BY ,则 X = Y X=Y X=Y

    证明:
    令 B L = ( B H B ) − 1 B H , 对于 B X = B Y ,等号两边同时左乘 B L , 得 B L B X = B L B Y I r X = I r Y ⇒ X = Y \begin{aligned} &令B_L=(B^HB)^{-1}B^H,对于BX=BY,等号两边同时左乘B_L,得B_LBX=B_LBY\\ &I_rX=I_rY\Rightarrow X=Y \end{aligned} BL=(BHB)1BH,对于BX=BY,等号两边同时左乘BL,BLBX=BLBYIrX=IrYX=Y

b. 低阵的右逆

C = C r × n C=C_{r\times n} C=Cr×n 存在右逆阵, C R = C H ( C C H ) − 1 C_R=C^H(CC^H)^{-1} CR=CH(CCH)1 ,使 C C R = I r CC_R=I_r CCR=Ir

性质:

  • 低阵消去法:

    C C C 为低阵,且 X C = Y C XC=YC XC=YC ,则 X = Y X=Y X=Y

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值