【矩阵论】4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


在这里插入图片描述

4.4 加号逆

4.4.1 定义

m × n m\times n m×n 矩阵 A = A m × n A=A_{m\times n} A=Am×n 与矩阵 X = X n × m X=X_{n\times m} X=Xn×m 满足四个条件

  • A X A = A AXA=A AXA=A
  • X A X = X XAX=X XAX=X
  • ( A X ) H = A X (AX)^H=AX (AX)H=AX
  • ( X A ) H = X A (XA)^H=XA (XA)H=XA

X X X A A A 的加号逆,记为 X = A + X=A^+ X=A+

a. 性质
  • A与 A + A^+ A+ 互为加号逆

  • A + A^{+} A+ 具有唯一性
    证明: ( 反证法 ) 假设 X , Y 都满足四个条件 , 有 A X A = A , X A X = X , ( A X ) H = A X , ( A Y ) H = A Y , A Y A = A , Y A Y = Y , ( A Y ) H = A Y , ( Y A ) H = Y A 有 X = X A X = A = A Y A ( 替换右侧 X ) X A Y A X = X ( A Y ) H ( A X ) H = X [ ( A X ) ( A Y ) ] H = A X A = A X ( A Y ) H = X A Y = A Y A = A ( 消去左侧 X ) X A Y A Y = ( X A ) H ( Y A ) H Y = [ ( Y A ) ( X A ) ] H A = ( Y A ) H Y = Y 故可得 A + 具有唯一性 \begin{aligned} &证明:(反证法)\\ &假设X,Y都满足四个条件,有AXA=A,XAX=X,(AX)^H=AX,(AY)^H=AY,\\ &AYA=A,YAY=Y,(AY)^H=AY,(YA)^H=YA\\ &有X=XAX\xlongequal{A=AYA(替换右侧X)}XAYAX=X(AY)^H(AX)^H=X[(AX)(AY)]^H\\ &\xlongequal{AXA=A}X(AY)^H=XAY\xlongequal{AYA=A(消去左侧X)}XAYAY=(XA)^H(YA)^HY=\\ &[(YA)(XA)]^HA=(YA)^HY=Y\\ &故可得A^+具有唯一性 \end{aligned} 证明:(反证法)假设XY都满足四个条件,AXA=A,XAX=X,(AX)H=AX,(AY)H=AY,AYA=A,YAY=Y,(AY)H=AY,(YA)H=YAX=XAXA=AYA(替换右侧X) XAYAX=X(AY)H(AX)H=X[(AX)(AY)]HAXA=A X(AY)H=XAYAYA=A(消去左侧X) XAYAY=(XA)H(YA)HY=[(YA)(XA)]HA=(YA)HY=Y故可得A+具有唯一性

  • A + A^+ A+ 的H穿脱公式: ( A H ) + = ( A + ) H (A^H)^+=(A^+)^H (AH)+=(A+)H

  • 乘积的加号逆无穿脱公式: ( A B ) + ≠ B + A + (AB)^+\neq B^+A^+ (AB)+=B+A+

  • 幂等性

    ( A + A ) 2 = A + A , ( A A + ) 2 = A A + (A^+A)^2=A^+A,(AA^+)^2=AA^+ (A+A)2=A+A,(AA+)2=AA+

    ( I − A + A ) 2 = I − A + A (I-A^+A)^2=I-A^+A (IA+A)2=IA+A

    • r ( I − A + A ) = n − r ( A + A ) = n − r ( A ) r(I-A^+A)=n-r(A^+A)=n-r(A) r(IA+A)=nr(A+A)=nr(A)

    • r ( I − A A + ) = r ( A ) r(I-AA^+)=r(A) r(IAA+)=r(A)

b. 加号逆特例
  • A = 0 A=0 A=0 ,则 A + = 0 A^{+}=0 A+=0

  • 若方阵 A = A n × n A=A_{n\times n} A=An×n 可逆 ( ∣ A ∣ ≠ 0 \vert A \vert\neq 0 A=0) ,则 A + = A − 1 A^+=A^{-1} A+=A1

  • A = ( a ) A=(a) A=(a) 为1阶阵,即 A = ( 复数 a ) A=(复数a) A=(复数a) ,则有 ( a ) + = a + = { a − 1 , a ≠ 0 0 , a = 0 (a)^+=a^+=\left\{\begin{aligned}a^{-1},&a\neq 0\\0,&a=0\end{aligned}\right. (a)+=a+={a1,0,a=0a=0

  • 对角阵 D = ( a 1 a 2 ⋱ a n ) D=\left(\begin{matrix}a_1&&&\\&a_2&&\\&&\ddots\\&&&a_n\end{matrix}\right) D= a1a2an ,则 D + = ( a 1 + a 2 + ⋱ a n + ) D^+=\left(\begin{matrix}a_1^+&&&\\&a_2^+&&\\&&\ddots\\&&&a_n^+\end{matrix}\right) D+= a1+a2+an+

    eg:

    在这里插入图片描述

    D + D = D D + D^+D=DD^+ D+D=DD+ ,且 ( D + ) k = ( D k ) + (D^+)^k=(D^k)^+ (D+)k=(Dk)+ ,(k=1,2,…)

    证明:

    在这里插入图片描述

  • A为Hermite幂等阵,即 A H = A = A 2 A^H=A=A^2 AH=A=A2 ,则 A + = A = A H A^+=A=A^H A+=A=AH

  • 若A为列优阵( A H A = I A^HA=I AHA=I) ,则 A + = A H A^+=A^H A+=AH
    证明 : 由于 A 是列半 U 阵,则 A H A = I A H A A H = A H , A A H A = A , ( A H A ) H = I = A H A , ( A A H ) H = A A H \begin{aligned} &证明:由于 A 是列半U阵,则 A^HA=I\\ &A^HAA^H=A^H,AA^HA=A,(A^HA)^H=I=A^HA,(AA^H)^H=AA^H \end{aligned} 证明:由于A是列半U阵,则AHA=IAHAAH=AH,AAHA=A,(AHA)H=I=AHA,(AAH)H=AAH

    A H A^H AH 为列优阵(A为行优阵)( A A H = I AA^H=I AAH=I) ,则 A + = A H A^+=A^H A+=AH

    证明 : 由于 A 是行半 U 阵,则 A A H = I A H A A H = A H , A A H A = A , ( A H A ) H = A H A , ( A A H ) H = I = A A H \begin{aligned} &证明:由于 A 是行半U阵,则 AA^H=I\\ &A^HAA^H=A^H,AA^HA=A,(A^HA)^H=A^HA,(AA^H)^H=I=AA^H \end{aligned} 证明:由于A是行半U阵,则AAH=IAHAAH=AH,AAHA=A,(AHA)H=AHA,(AAH)H=I=AAH

  • 若A为U阵(单位正交阵),则 A + = A H = A − 1 A^+=A^H=A^{-1} A+=AH=A1

    若A为U阵,则 A H A = A A H = I , A H = A − 1 A^HA=AA^H=I,A^H=A^{-1} AHA=AAH=I,AH=A1

    A H A A H = A H , A A H A = A , ( A A H ) H = I = A A H , ( A H A ) H = A H A A^HAA^H=A^H,AA^HA=A,(AA^H)^H=I=AA^H,(A^HA)^H=A^HA AHAAH=AH,AAHA=A,(AAH)H=I=AAH,(AHA)H=AHA ,故 A + = A H A^+=A^H A+=AH

  • 若A为单阵(可相似对角化)且可逆 ,则有谱分解 A = λ 1 G 1 + ⋯ + λ k G k A=\lambda_1G_1+\cdots+\lambda_kG_k A=λ1G1++λkGk A + = λ 1 − 1 G 1 + ⋯ + λ k − 1 G k A^+=\lambda_1^{-1}G_1+\cdots+\lambda_k^{-1}G_k A+=λ11G1++λk1Gk

    若不满足可逆条件,则未必成立

  • 若A为正规阵(正规方阵),则 A + A^+ A+ 也为正规阵

    有正规分解 A = Q D Q H A=QDQ^H A=QDQH ,则 A + = Q D + Q H A^+=QD^+Q^H A+=QD+QH

    有谱分解 A = λ 1 + G 1 + ⋯ + λ k + G k A=\lambda_1^+G_1+\cdots+\lambda_k^{+}G_k A=λ1+G1++λk+Gk

c. A A + AA^+ AA+ A + A A^+A A+A 相关结论
  • A A + AA^+ AA+ A + A A^+A A+A 都是Hermite阵

  • r ( A + A ) = r ( A A + ) = r ( A ) = t r ( A A + ) = t r ( A + A ) r(A^+A)=r(AA^+)=r(A)=tr(AA^+)=tr(A^+A) r(A+A)=r(AA+)=r(A)=tr(AA+)=tr(A+A)

    由于矩阵的秩越乘越小,则 r ( A A + ) ≤ r ( A ) r(AA^+)\le r(A) r(AA+)r(A) A = A A + A A=AA^+A A=AA+A ,则 r ( A ) ≤ r ( A A + ) r(A)\le r(AA^+) r(A)r(AA+) ,故有 r ( A A + ) ≤ r ( A ) ≤ r ( A A + ) r(AA^+)\le r(A)\le r(AA^+) r(AA+)r(A)r(AA+)

  • 幂等性: ( A A + ) 2 = A A + (AA^+)^2=AA^+ (AA+)2=AA+ ( A + A ) 2 = A + A (A^+A)^2=A^+A (A+A)2=A+A

    在这里插入图片描述
    在这里插入图片描述

( 1 ) A = ( 1 0 2 1 ) 为可逆阵,则 A + = A − 1 = ( 1 0 − 2 1 ) , A = ( a b c d ) = 1 ∣ A ∣ ( d − b − c a ) ( 2 ) ( 3 ) ( 4 ) 中 A 为对角阵 \begin{aligned} &(1)A=\left( \begin{matrix}1&0\\2&1 \end{matrix} \right)为可逆阵,则A^+=A^{-1}=\left( \begin{matrix}1&0\\-2&1 \end{matrix} \right),A=\left( \begin{matrix} a&b\\c&d \end{matrix} \right)=\frac{1}{\vert A\vert}\left( \begin{matrix} d&-b\\-c&a \end{matrix} \right)\\ &(2)(3)(4)中A为对角阵 \end{aligned} (1)A=(1201)为可逆阵,则A+=A1=(1201),A=(acbd)=A1(dcba)(2)(3)(4)A为对角阵

  • λ ( A A + ) \lambda(AA^+) λ(AA+) λ ( A + A ) \lambda(A^+A) λ(A+A) 都有 r ( A ) r(A) r(A) 个1

    A ∈ C m , n , A + ∈ C n , m A\in C^{m,n},A^+\in C^{n,m} ACm,n,A+Cn,m 由于 A A + AA^+ AA+ A + A A^+A A+A 都是 Hermite 阵,且 A + A A^+A A+A 是幂等阵, ( A A + ) 2 = A A + , ( A + A ) 2 = A + A (AA^+)^2=AA^+,(A^+A)^2=A^+A (AA+)2=AA+,(A+A)2=A+A ,由Caley定理 x 2 = x x^2=x x2=x 则其0化式为 x 2 − x = 0 x^2-x=0 x2x=0 A A + AA^+ AA+ 有两个不同的根1和0

    已知 r ( A + A ) = r ( A A + ) = r ( A ) = r r(A^+A)=r(AA^+)=r(A)=r r(A+A)=r(AA+)=r(A)=r

    A A + AA^+ AA+ 有r个正根,m-r 个0根; A + A A^+A A+A 有r个正根,n-r 个0根

  • A + A A^+A A+A A A + AA^+ AA+ 都是半正定阵 ( A A + ≥ 0 , A + A ≥ 0 AA^+ \ge 0,A^+A\ge 0 AA+0,A+A0)

    已知 A + A A^+A A+A 为幂等阵,则 ( A A + ) 2 = ( A A + ) H ( A A + ) = P = A A + P H P ≥ 0 (AA^+)^2=(AA^+)^H(AA^+)\xlongequal{P=AA^+}P^HP\ge 0 (AA+)2=(AA+)H(AA+)P=AA+ PHP0 ,故 A A + AA^+ AA+ 为半正定阵,同理 A A + AA+ AA+ 为半正定阵

    由Caley定理, x 2 = x x^2=x x2=x ,则0化式 x ( x − 1 ) = 0 x(x-1)=0 x(x1)=0 ,故特根 ≥ \ge 0 ,为半正定阵

  • 一般有 A A + ≠ I AA^+\neq I AA+=I , A + A ≠ I A^+A\neq I A+A=I , 且 A A + ≠ A + A AA^+\neq A^+A AA+=A+A

  • 若 A 为正规阵,则 A + A = A A + A^+A=AA^+ A+A=AA+ ,且 ( A + ) k = ( A k ) + , k = 0 , 1 , 2 , ⋯ (A^+)^k=(A^k)^+,k=0,1,2,\cdots (A+)k=(Ak)+,k=0,1,2,
    由于 A 是正规阵,则 A A H = A H A , A 有正规分解 A = Q D Q H = Q ( λ 1 ⋱ λ n ) Q H , 其中 Q 为 U 阵 ⇒ A + = ( Q D Q H ) + = ( Q H ) + D + Q + = Q + = Q H Q D + Q H , ⇒ ( A + ) k = ( Q D + Q H ) k = Q ( D + ) k Q H = Q ( D k ) + Q H = ( A k ) + 且 A + A = ( Q D + Q H ) Q D Q H = ( Q D + D Q H ) = Q D D + Q H = ( Q D Q H ) ( Q D + Q H ) = A A + \begin{aligned} &由于A是正规阵,则AA^H=A^HA,A有正规分解A=QDQ^H=Q\left( \begin{matrix} \lambda_1&&\\&\ddots&\\&&\lambda_n \end{matrix} \right)Q^H,\\ &其中Q为U阵 \\ &\Rightarrow A^+=(QDQ^H)^+=(Q^H)^+D^+Q^+\xlongequal{Q^+=Q^H}QD^+Q^H,\\ &\Rightarrow (A^+)^k=(QD^+Q^H)^k=Q(D^+)^kQ^H=Q(D^k)^+Q^H=(A^k)^+\\ &且A^+A=(QD^+Q^H)QDQ^H=(QD^+DQ^H)=QDD^+Q^H=(QDQ^H)(QD^+Q^H)=AA^+ \end{aligned} 由于A是正规阵,则AAH=AHA,A有正规分解A=QDQH=Q λ1λn QH,其中QUA+=(QDQH)+=(QH)+D+Q+Q+=QH QD+QH,(A+)k=(QD+QH)k=Q(D+)kQH=Q(Dk)+QH=(Ak)+A+A=(QD+QH)QDQH=(QD+DQH)=QDD+QH=(QDQH)(QD+QH)=AA+

  • 5
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值