训练正常&异常的GAN损失函数loss变化应该是怎么样的

这里以个人用到的一个网络为例,仅供参考,不代表所有情形。
用tensorboard记录loss曲线的走向,横轴为迭代次数(iter),纵轴为损失(loss)值。


正常的

判别器loss
在这里插入图片描述
loss在2.6到3.4之间来回上下波动。注意,在tensorboard中,最好将Smoothing值调整为0,如果使用了Smoothing将比较难观察到loss的波动趋势,这里以Smoothing为0.999为例,还是展示判别器损失:
在这里插入图片描述
这个时候容易误判为判别器loss在稳步下降。不过实际上可以发现这个"下降"从3.25降到了3.05,所以本质上还是小范围波动。
生成器loss
在这里插入图片描述
loss在3.0到3.6之间来回上下波动。类似的,观察Smoothing为0.999时的情况:
在这里插入图片描述
给人的感觉是生成器loss一直在往上跑,可能会怀疑生成器没在进一步学习;但实际上仔细看容易发现只是从3.25跑到了3.35,依旧是在一个小区间内波动,生成器的能力确实是在继续逐步增强的。


生成器崩溃

判别器loss
在这里插入图片描述
可以发现从3一路下降到了0.8,在训练一开始就有在快速下降。观察Smoothing为0.999时的情况:
在这里插入图片描述
生成器loss
在这里插入图片描述
可以发现从4一路上升到了6.5,在训练一开始就有在快速上升。观察Smoothing为0.999时的情况:
在这里插入图片描述
从结果的角度出发,在生成器loss快速上升的时候,其已经开始生成无意义的噪声图像:
在这里插入图片描述


小结

从原理上来说,生成器和判别器从一开始都是非常弱的,因此一般不会在训练一开始两者损失就非常剧烈的波动。在训练一段时间达到稳定期后,生成器和判别器的损失都应该在一个小区间内波动,而不会有明显的持续上升/下降趋势。
如果生成器损失持续明显上升,表明其无法学习怎么欺骗判别器,体现在结果上就是开始生成噪声。
如果判别器损失持续明显上升,表示其无法学习怎么识别生成器,体现在结果上就是生成器可能会生成一致的,无意义的但是能欺骗判别器的图像(比如直接输出训练集中的样本)。

GAN(生成对抗网络)是一种机器学习模型,由生成器和判别器两个网络组成。生成器负责生成与训练数据相似的新样本,而判别器则负责区分生成器生成的样本和真实样本。GAN训练目标是使生成器能够生成足够逼真的样本,以至于判别器无法区分真实样本和生成样本。 GAN训练是一个迭代的过程,每次迭代中生成器和判别器都会更新自己的参数,以便更好地执行各自的任务。GAN损失函数由两部分组成,一部分是生成器的损失,即生成器产生的样本被判别器判断为真实样本的概率的对数。另一部分是判别器的损失,即正确判断真实样本的概率的对数与正确判断生成样本的概率的对数的和。 在正常情况下,GAN的损失会发生变化。初始阶段,生成器的输出可能与真实样本差距较大,判别器能够准确判断出生成样本并给出高的损失值,同时生成器的损失值较低。随着训练的进行,生成器逐渐改进其输出,使其更加接近真实数据,判别器变得难以区分真实样本和生成样本,因此判别器的损失逐渐降低,而生成器的损失逐渐增加。 然而,GAN训练过程中的损失变化并非单调增减,有时可能会出现损失值的波动或突然增加的情况。这可能是由于训练数据的复杂性、网络结构的选择、学习率的设置等因素导致的。因此,GAN损失的变化正常情况下是一个动态的过程,需要根据实际情况进行监控和调整,以达到训练生成器和判别器的最佳性能。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值