【Nvidia边缘AI】Jetson Orin Nano Super Devkit开发板测评:边缘AI的性价比王者

前言

我一直都很喜欢“统一内存”这个设计。内存可以作为显存使用,价比金贵的内存第一次有了性价比。自从Apple M1芯片引入了统一内存架构,我第一次发现,从前只能办公上网的轻薄本在拥有了11TOPS算力后,也是能在AI领域战未来的。Jetson Orin系列AI开发板就是百花齐放的统一内存阵营的一员。在固件更新后,Jetson Orin Nano的8G版本性能释放到了25w,双通道内存带宽达到了102GB/s,算力也是来到了恐怖的67TOPS。进入AI时代,大语言模型的更新换代层出不穷,喜欢自己部署大语言模型的朋友,相信都对ollama爱不释手,ollama是如今最常见的本地大语言模型部署工具,它开源且开放,我也习惯从大语言模型入手来接触一个平台,尤其是在支持 CUDA 的 Jetson 平台上能够以更少性能损失的代价使用 MLC 运行具有更高性能后端的模型,也就是说能比通用的llama.cpp具有更高的单位时间有效token处理速度,token/s代表了模型一秒钟可以处理的数据量,这个数字越大,模型处理数据的速度更快,直观地感受token/s的速度就是能明显看到,在使用MLC为后端的模型时,回答的思考速度和吐字速度变得更快了。daisy.skye-CSDN博客daisy.skye擅长Linux,嵌入式,Qt,等方面的知识 https://blog.csdn.net/qq_40715266?spm=1011.2124.3001.5343

一、开箱体验:极简扩展并存

Jetson Orin Nano Super的包装延续了NVIDIA一贯的简洁风格,内部配件包括电源适配器、Type-C数据线及快速上手指南。开发板本体仅69.6mm×45mm,重量约150g,体积与树莓派相当,但功能却远超传统单板计算机。

接口配置堪称豪华:

显示输出:仅保留DisplayPort 1.2接口,支持4K@60Hz输出;

存储扩展:双M.2插槽(2280/2230规格),支持NVMe SSD,理论容量达4TB;

外设连接:4×USB 3.2、千兆网口、CSI摄像头接口(支持4路物理通道)及40针GPIO扩展,满足机器人、无人机等复杂场景需求。

二、NVIDIA Jetson 软件生态

1. JetPack SDK
  • 核心组件L4T (Linux for Tegra):定制化 Linux 发行版,集成 GPU 驱动和 AI 加速库。
    • CUDA Toolkit:支持 GPU 加速计算。
    • cuDNN:深度学习卷积神经网络加速库。
    • TensorRT:优化推理性能,支持 INT8 量化。
    • OpenCV GStreamer:多媒体处理框架。
  • 下载与文档JetPack SDK 下载JetPack 文档
2. 开发工具链
3. 容器化与云边协同
  • L4T 容器引擎:支持 Docker 和 Kubernetes 在 Jetson 上运行。
  • NVIDIA Clara:云端训练与边缘推理框架。官网NVIDIA Clara
  • NVDS (NVIDIA Deep Learning SDK):集成视频分析、目标检测等工具链。官网NVDS

三 、应用场景

1、本地部署DeepSeek

跟着官方引导来到模型页面,国产骄傲DeepSeek排名在与MLC适配好的众多热门模型之首,想也不用想当然是想要试试deepseek的。由于8G内存最大只能运行8B的模型,所以就直接选择DeepSeek R1 Llama-8B来进行本地部署。

经常自己部署模型的朋友都知道,从头开始部署一系列环境和应用乃至模型,是一件不算简单的事情,而遇到麻烦的环境,就不得不见见我们的好朋友docker了。docker是一个优秀的部署工具,而使用docker compose是一种相当优雅的体验,不需要关心参数选项,将繁琐的路径最优化,我只想要也只需要与应用交互。所以能够直接套用的compose脚本,更能够体现现代化的应用部署方式。

基于compose脚本我微调了一些选项,我为了流畅下载,在配置中增加了代理选项,让模型的下载速度更上一层楼;取消了每次启动时强制拉取镜像的选项,更适合中国宝宝的体质。代理选项HTTP_PROXY和HTTPS_PROXY的地址根据实际情况进行更改或者移除。

services:
  llm-server:
    stdin_open: true
    tty: true
    container_name: llm_server
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities:
                - gpu
    ports:
      - 9000:9000
    environment:
      - HF_HUB_CACHE=/root/.cache/huggingface
      - HTTP_PROXY=http://192.168.233.121:7890
      - HTTPS_PROXY=http://192.168.233.121:7890
    volumes:
      - /mnt/nvme/cache:/root/.cache
    image: dustynv/mlc:r36.4.0
    command: sudonim serve --model
      dusty-nv/DeepSeek-R1-Distill-Llama-8B-q4f16_ft-MLC --quantization
      e4m3_f16_max --max-batch-size 1 --chat-template deepseek_r1_llama --host
      0.0.0.0 --port 9000
    healthcheck:
      test: ["CMD", "curl", "-f", "http://0.0.0.0:9000/v1/models"]
      interval: 20s
      timeout: 60s
      retries: 45
      start_period: 15s

  open-webui:
    profiles:
      - open-webui
    depends_on:
      llm-server:
        condition: service_healthy
    stdin_open: true
    tty: true
    container_name: open-webui
    network_mode: host
    environment:
      - ENABLE_OPENAI_API=True
      - ENABLE_OLLAMA_API=False
      - OPENAI_API_BASE_URL=http://0.0.0.0:9000/v1
      - OPENAI_API_KEY=foo
      - HF_HUB_CACHE=/root/.cache/huggingface
    volumes:
      - /mnt/nvme/cache/open-webui:/app/backend/data
      - /mnt/nvme/cache:/root/.cache
    image: https://ghcr.io/open-webui/open-webui:main

将docker compose脚本保存到本地,只需要输入`sudo docker compose --profile open-webui up`就可以按照脚本中的预设,等待后端llm-server启动完成后再跟随启动前端open-webui,免去了手动启动或者是同步启动导致的前端干等后端的情况

在运行大模型套件之前,为了最大化这块67TOPS算力卡的性能,可以使用jtop工具锁定最高工作频率和功率,物尽其用。具体是在jtop的Ctrl页,可以通过鼠标点击来启用散热优先的cool风扇策略,接着启用Jestson clocks强制电源使用最高功率,最后不要忘了把功率切换到MaxnSuper模式,这样操作三部曲过后,可以在散热、电源和功率层面上最大化发挥出这套系统的处理能力。

一键运行,去泡一杯卡布奇诺,用不了几分钟镜像和模型就都下载好了,一切都是无感知有序启动只需要像以前那样打开openwen ui8080端口

由于大模型使用GPU进行计算,基本不占用CPU,所以可以看到GPU有难,CPU围观的奇妙景象,也就意味着还有余量使用CPU进行其他工作。

2、视觉检测 Jetson-AI-Lab

Jetson Orin Nano不仅能部署大语言模型,还能以最少的学习和使用成本进行众多的ai相关的应用,像是视觉模型、图像媒体生成、机器人,甚至能够将这些所有应用组合在一起成为一个工作室级别的跨应用。

要让AI进入科幻时代,视觉模型是必不可少的一环,当AI获得了视野,就像是新时代的巨人睁开了双眼,映入眼帘的不再是猜测,而是确定的实体。给运行着视觉模型NanoOWL的Jetson Orin Nano接入一个普通的USB摄像头,它就得到了/dev/video0这只眼睛。

使用 jetson-containers run 和 autotag 命令来自动拉取或构建兼容的容器镜像,非常简单方便

jetson-containers run --workdir /opt/nanoowl $(autotag nanoowl)

维度

Jetson-AI-Lab 模型

传统云端/通用模型

延迟

毫秒级(本地处理)

秒级(网络传输+云端计算)

成本

硬件一次性投入(<3000元)

持续云服务费用

隐私安全

数据本地处理,无需上传云端

数据外流风险

更新维护

热更新支持(Triton 服务器)

需依赖云端更新

Jetson-AI-Lab 模型的核心优势在于 轻量化、多模态、低延迟,通过技术与生态的双重优化,为边缘 AI 场景提供了高性价比的解决方案。

3、开源模型 加速创新

除了上述提到Jetson AI Lab推出的LLava(Live LLaMA Video-Text Adapter)项目以外,还有如下NGC (NVIDIA GPU Cloud)和NVIDIA Model Zoo的开源模型。Nvidia在开源领域持续深耕,以及详细的技术指导大幅降低AI研发门槛,助力了全球开发者加速创新。更通过开源社区协作,推动硬件与算法协同优化,为人工智能普及奠定坚实基础。Nvidia的开放策略不仅加速了技术迭代,更重塑了行业协作范式,堪称开源精神的典范践行者。

开源

模型

NGC (NVIDIA GPU Cloud)

NVIDIA Model Zoo

简介

提供预训练模型、工具包和容器镜像,加速开发流程。

开源模型库,支持 Jetson 直接部署。

模型类型

目标检测:YOLOv8、SSD-ResNet50。

图像分割:U-Net、Mask R-CNN。

语音识别:Tacotron 2、WaveGlow。

分类:ResNet-18、MobileNet-SSD。

分割:FCN-8s、UNet。

检测:Faster R-CNN、YOLOv7。

官方链接

NGC Catalog

NVIDIA Model Zoo

四、总结:性价比与性能的完美平衡

Jetson Orin Nano Super以249美元的售价(前代499美元),提供堪比专业级设备的AI算力,足够成为学生、创客与中小企业的理想选择而且即插即用特性与丰富的软件生态,大幅降低AI开发门槛;而通过刷机升级至Super模式,对于老用户来说无缝过渡。非常适合想要学习和正在学习AI开发领域与嵌入式智能人工领域相关的开发者学习者!

### Jetson Orin 刷机教程 #### 硬件准备 在开始刷机之前,需要准备好必要的硬件设备。这通常包括一台支持USB-C接口的电脑、一条高质量的数据传输线以及目标Jetson Orin开发板本身[^1]。 #### 安装SDK Manager 为了能够顺利刷新Jetson Orin系统的镜像文件,需下载并安装NVIDIA官方提供的工具——SDK Manager。此软件负责管理整个刷机流程,包括但不限于固件更新、操作系统部署以及其他必要驱动程序和库文件的配置工作。 #### 在线或离线模式下的具体操作步骤说明如下: 对于初次使用者来说,在网络连接良好的情况下推荐采用在线方式进行初始化设置;而对于那些已经具备一定经验或者特殊需求(比如定制化环境构建)的人群,则可以选择通过本地存储介质来完成相应过程即所谓的“离线”方式。 值得注意的是,“刷机”的本质在于利用特定版本号定义好的JetPack套件重新加载至目标机器之上。例如当前最新稳定版可能为JetPack 5.0.2,它不仅包含了基础Linux发行版(Ubuntu 20.04 LTS),还集成了多种针对AI计算优化过的框架和技术栈,如CUDA Toolkit, cuDNN Library 和 TensorRT Engine等等[^2]。 另外还有关于恢复出厂设置或者是基于先前保存下来的自定义快照来进行还原的操作指南可供参考学习。如果曾经按照标准指导成功创建了一份有效的系统映象副本的话,那么只需执行命令`sudo ./tools/backup_restore/l4t_backup_restore.sh -r jetson-orin-nano-devkit`即可快速实现上述目的[^3]。 最后提醒一点非常重要:无论采取哪种途径实施实际动手前都务必确认物理按键组合顺序正确无误以免造成不必要的麻烦。当设备处于运行状态之中想要进入强制复位模式时,请遵循这样的原则——持续按压某个指定按钮直到指示灯发生变化为止然后再释放它们先后次序分别是先保持住Force Recovery Button不放紧接着触发Reset Switch稍作等待之后再分别放开这两个开关元件[^4]。 ```bash # 还原备份示例脚本调用方法 sudo ./tools/backup_restore/l4t_backup_restore.sh -r jetson-orin-nano-devkit ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值