基于模糊pid的高精度温度控制系统(源码+万字报告+部署讲解等)

目 录

摘 要 I
Abstract III
插图与附表清单 VI
目 录 IX
1 绪论 1
1.1 研究背景与意义 1
1.2 温度控制国内外研究现状 2
1.2.1 国外研究现状 2
1.2.2 国内研究现状 4
1.3 本文主要的内容和工作安排 6
2 基于模糊PID的高精度温度控制算法 9
2.1 传统PID控制算法 9
2.2 模糊PID控制算法 11
2.2.1 模糊控制原理 11
2.2.2 模糊PID控制原理 12
2.3 系统控制对象 13
2.4 基于模糊PID的高精度温度控制算法设计 15
2.4.1 电流内环设计 16
2.4.2 温度外环设计 16
2.5 本章小结 21
3 系统硬件设计 22
3.1 STM32G030控制器简介 22
3.2 电源模块设计 23
3.2.1 开关电源模块 23
3.2.2 降压电路 24
3.3 电流检测模块设计 25
3.4 温度检测模块设计 26
3.4.1 温度传感器 26
3.4.2 温度检测电路 26
3.4.3 电压基准电路 27
3.5 驱动模块设计 28
3.6 人机交互模块设计 29
3.7 通讯模块设计 30
3.8 本章小结 31
4 系统软件设计 32
4.1 下位机软件设计 32
4.1.1 主程序设计 32
4.1.2 温度电流采集程序设计 33
4.1.3 控制算法程序设计 36
4.1.4 通讯模块程序设计 37
4.2 上位机软件设计 38
4.3 本章小结 41
5 系统控制策略仿真与实验验证 42
5.1 控制策略仿真 42
5.2 温度控制系统实验验证 46
5.3 本章小结 48
6 总结与展望 49
6.1 总结 49
6.2 展望 49
参考文献 50
致 谢 51
在校期间的科研成果 51

1绪论
在当今科技不断发展的背景下,温度控制技术在各种实验室和工业应用中扮演着至关重要的角色。对于许多化学反应、生物实验以及其他实验室过程而言,确保温度的准确、稳定控制是保证实验结果可重复性和产品质量的关键因素之一。磁力搅拌器广泛应用于化学、生物等实验室中,能够有效混合、搅拌、溶解悬浮颗粒物质,从而确保温度均匀分布,其温度控制直接关系到反应过程的成功进行。
传统PID控制方法在很多情况下已经取得了良好的控制效果,但是在处理非线性、时变、模糊和复杂系统时,其性能仍然存在一定局限性。为了更好地适应磁力搅拌器温度控制系统中被控对象的复杂性和不确定性,模糊PID控制技术逐渐成为研究的焦点。通过引入模糊PID控制系统,能够更灵活地应对复杂、非线性的温度控制任务。
本论文旨在深入研究并设计一种基于模糊PID的高精度温度控制系统,并将其应用在磁力搅拌器的温度控制系统中。通过结合模糊控制和传统PID控制,旨在提高磁力搅拌器温度控制系统的鲁棒性、稳定性和精确性,以满足实验室和工业中对温度控制的高要求。串级控制系统大多应用到过程控制中,特别在 控制中有时滞长、惯性大、干扰严重,振幅大的过 程控制应串级控制。它可以缩短过程控制中时滞长、 惯性大的过程响应时间,外界扰动可以快速消弱且 控制结构比较简单。因此,串级控制在工业过程控 制中具有广阔的应用前景。
1.1 研究背景与意义
磁力搅拌器是一种多功能工具,在实验室和工业环境中扮演着重要的角色,广泛应用于化学、生物、制药、食品科学等领域,其能够有效混合、搅拌、溶解悬浮颗粒物质,从而确保温度均匀分布,总体而言,磁力搅拌器的应用广泛,它提供了一种有效且无需机械部件进入反应物的方式,避免了可能对反应物造成污染或带来其他问题的可能性,在需要精确搅拌和控制的工业过程中,磁力搅拌器成为了一种常见而可靠的选择。常见的磁力搅拌器如图1.1所示。

图1.1 磁力搅拌器
磁力搅拌器不仅需要搅拌混合反应物,也需要向反应物提供稳定的热量以维持反应条件,准确的温度控制是确保实验和生产的一致性以及实验可重复性的关键,有助于保证产品质量的稳定性和可靠性,因此,提高磁力搅拌器温控系统的控制精度具有非常重要的现实意义。
然而,由于磁力搅拌器中的电阻炉盘具有大滞后、非线性以及无法精确获得数学模型的特点,在实际的温度控制过程中,存在一些挑战。常规的PID控制方法,由于其参数整定大多依靠实际经验,难以兼顾系统中的各种指标,因此在磁力搅拌器温度控制中很难达到最优控制效果。目前市场上主要采用王晓芳提出的经典PID算法来设计控制器, 这种控制器也只能满足一般的温控要求。由于经典PID其参数一经确定无法就无法更改,对于磁力搅拌器的电阻炉盘这种具有时变性、大惯性的被控对象,这种控制方法无法根据当前情况及时调整参数,达不到更佳的控制效果。市场的迫切需求和目前技术中存在的不足,需要我们改进磁力搅拌器的温度控制系统,提高温度控制系统的控制性能。
如果将PID控制、串级控制以及智能控制中的模糊控制相结合,设计一种结合了三种控制优势的控制系统,这种控制系统能够通过模糊控制根据系统当前情况及时调整PID的相关参数,同时利用串级控制提高系统的稳定性。这种结合了三种控制方式的温控系统可以提高温控系统控制精度、提高系统控制性能,实现满足市场需求和解决技术不足的目的,具有很大的现实意义。
1.2 温度控制国内外研究现状
1.2.1 国外研究现状
在PID 控制策略方面,Sheng Wu等人针对工业过程控制中PID控制器精度不高、稳定性差的问题,提出了一种基于动态矩阵控制(Dynamic Matrix Control,DMC)优化的新型PID控制器设计。实验结果显示该控制器能够有效地抑制温度波动,提高控制精度和稳定性。Li Haisheng等人提出了一种基于DMC优化的新型PI-PD控制设计,该设计具有DMC优化控制性能好、PI-PD控制实现结构简单的优点。对工业退火炉的出口温度进行了PI-PD控制器测试,结果表明,该控制器在设定点跟踪和干扰抑制方面表现出更好的控制性能。L. Shen 等人提出一种工件温度补偿与智能PID解耦控制相结合的温度均匀性控制策略。通过工业实验结果表明,该系统能够有效实现平稳调节,显著提高温度均匀性。Li, J. W等人对真空热处理炉中小型工件的加热过程进行了实验研究和数值模拟。采用PID控制算法对数值传热模型进行温度控制,在加热过程中工件内的温度变化降至5℃以内。Y. Wang 等人针对内热真空炉温度控制系统时延大、实时温度难以精确测量的问题开发了一种基于粒子群的Smith预测PID混合控制器。仿真结果表明该控制器具有上升时间短、调整时间短等优点。A. Raghav等人提出了一种基于热电冷却器非线性PID温度控制的简单算法,该算法结合了环境温度反馈,可在具有不同温度的各种环境中实现最佳操作,适用于简单的温度控制,过冲小于0.1°C,精度为±0.1°C。S. Danech采用PID控制方法和STM32微控制器单元,构建了快速、高精度的温度控制系统。该温控系统可用于对温控响应速度和精度有较高要求的工业领域。Sundayani等人将PID控制器仪表设计用于控制热电冷却器的输入电流。使得热量分布变得更加均匀,并且可以达到设定的温度。
在预测控制方面,Ridong Zhang与Shuqing Wang开发了一种基于支持向量机的非线性预测功能控制设计方法,并将其应用于工业退火炉,与传统控制策略相比,提高了输入跟踪和负载扰动抑制的调节能力。X. Hu等人提出一种工业退火炉温度控制的分数阶预测功能控制方法。实验测试表明,与传统的整数模型相比,该控制器的效果更好。Zhang Ridong等人提出一种利用新型状态空间结构对工业退火炉温度控制模型预测控制,该控制器可以基于状态空间公式来改善温度调节指标。Weide Xu等人提出一种基于多模型切换的预测功能控制方法,并将其应用于电加热炉温度控制系统。该控制策略提供了电加热炉温度的有效和独立的控制模式,获得了更好的控制性能。
在模糊控制方面,A. Rospawan提出一种新型模糊自适应预测PID控制,利用新型输出递归模糊广义学习系统对一类具有时滞的非线性离散时间动态系统进行设定点控制,具有较强的跟踪能力。Qingbao Huang等人设计了一种自适应模糊PID控制器以提高电阻炉的控制性能,并将OPC(OLE for Process Control)通信应用于基于Modbus/TCP工业以太网的
远程温度控制系统。控制结果验证了电阻炉温控系统性能令人满意。M. Cao和Q. Li针对耐磨环生产中原材料热处理过程非线性、耦合性强、延时大等问题,提出一种基于阶梯控制的模糊PID温度控制器。通过仿真验证,该控制器能够加快响应速度,缩短调整时间,减少过冲和温度波动,从而优化冶炼温度控制过程。Y. Chen, J等人的研究针对真空冶炼过程中存在的温度控制非线性和精度差等问题,设计了一种辩论域模糊PID控制器。该控制器通过在线协调PID参数有效提高了温度控制精度。J. C. Mugisha等人利用智能模糊控制和PID控制器进行工业热处理炉温度控制的设计。经验证发现模糊控制的输出响应在过冲和稳态误差方面比PID更加准确。
在其他控制算法方面,H. Qingqing等人针对温控系统具有时变、非线性和纯迟滞特性,设计了一种基于粒子群优化的二维自适应模糊PID控制器。仿真结果表明,该控制器超调量小,上升和调整时间有效缩短,响应速度变快,提高了热泵系统的鲁棒性和抗干扰性。B. K. Sethi使用人工神经网络训练印度CFBC锅炉获得输入输出数据,并引入粒子群优化算法对人工神经网络参数进行优化,得到了较好的控制效果。Zhenglong Fu提出了一种利用FLUENT 模拟高温合金坯料在电阻炉加热的新方法。对箱式电炉在与环境进行对流换热条件下的自然对流和表面热辐射进行了数值分析并求解。A.Peck研究了某燃气工业箱式炉的温度均匀性,建立了降阶传递函数形式的炉膛数学模型,并测试了控制系统变化对温升时间和稳态误差的影响。研究表明,对PID控制器进行微调即可显著缩短温度上升时间。Youwen Chen等人提出了一种加热炉工业作业的编排方法。利用蚁群算法实现了加热炉的实时控制与作业优化,该方法已经在某钢厂实际投入使用,并取得了良好的效果。
综上所述,国外对热处理炉温度控制的研究已经取得了一定进展,并且在控制算法的研究方面处于领先地位,这些方法可以有效地提高热处理过程温度控制的精度和稳定性。然而,热处理炉温度控制技术的发展仍然面临着能耗和环境污染等问题,需要进一步加强研究和应用,以满足不断提高的工业生产需要。
1.2.2 国内研究现状
在模糊控制算法的应用方面,杨胜利提出了一种参数自整定模糊PID控制方式,并通过实验的结果验证了这种控制方式对炉温控制的优越性以及正确性。张矿伟等人对炉内温度场的分布进行了分析,提出基于参数模糊自整定PID控制算法的控制策略,设计了真空冶炼炉的温度控制系统,提高了系统的整体性能。王广生等人研究的模糊控制器,已经广泛应用于实际生产中,并取得了良好的使用效果。郑玉红等人用退火炉温度均匀性测量方法的改进进行数据处理,将集群智能的方法引入模糊控制器设计解决其依赖人工经验的缺陷。李鑫等人针对管材真空退火炉温度及均温控制研究,提出了参数自整定模糊PID控制算法实现PID参数的在线优化,通过使用OPC技术实现各温区温度的局部调整,以达到大型真空退火炉真空度自动控制、炉区温度高精度和多温区高均温性控制的目的。彭伟等人研究了几种常见的智能PID算法,包括神经网络PID算法、以及基于遗传算法的PID优化算法,最终通过仿真和应用确立使用模糊PID控制算法对真空热处理炉进行温度控制。
在神经网络的应用方面,张庆宇等在具有大惯性和非线性特点的工业锅炉温度控制方面,采用了神经网络BP(Back Propagation)学习算法记忆模糊的规则样本,设计了一种优化的温度控制器。罗伟等人的研究表明,基于模糊神经网络的温度控制器具有响应速度快和计算误差小等优点。康龄房等人通过实践结果表明,采用了改进BP算法的神经模糊控制器的动态和静态的特性都比较好。赵鹏程等人提出了一种基于神经网络与模糊控制相结合的控制器,用于工业锅炉的温度控制,该控制器利用神经网络的BP学习算法记忆模糊控制的规则样本,实现对锅炉温度的精确控制。实验仿真表明该控制器响应速度快且精度高。洪世杰利用神经网络PID控制算法,在PC和PLC上实现了真空退火炉的温度控制。该算法通过MATLAB软件实现,并借助组态软件将其与S7-300PLC编程软件结合,实现了在PC和PLC上共同编程的目标,为真空退火炉的温度控制提供了有效的解决方案。孙冠琼等人利用模糊神经网络PID控制方法,针对立式真空退火炉的多温区解耦温度控制问题进行了研究。李晓斌等人通过神经网络建立真空退火炉控制模型,采用自适应免疫遗传算法全局搜索最优的可变PID参数。应用结果表明,该温度控制系统优于传统的PID控制系统,并具有良好的可靠性、自适应性和鲁棒性。
在遗传算法(Genetic Algorithm,GA)应用方面,于波针对内热式真空退火系统,提出了一种基于遗传算法的综合智能控制策略,通过实验表明该控制方法可以更加精确的控制温度,缩短退火时间,降低能耗,提高效率。常蓬彬提出了基于自适应遗传算法的变参数PID控制策略,具有较好的可靠性和抗干扰能力,实现了真空退火炉温控误差<5℃的目标,降低了废品率。李璀璀等人即采用了遗传算法实现了对电动舵机温度控制系统的模糊PID控制。汤素丽等人对粒子群、遗传算法及它们的混合算法进行了讨论,提出一种基于改进PSO-GA混合优化算法的PID神经网络解耦控制方法,并利用MATLAB进行了该解耦方法的性能仿真验证。结合真空退火系统,并通过仿真验证该方法的解耦性及解耦效果。
在其他控制策略方面,贾云等人对电阻炉进行了PID调节与Smith预估,并进行对其非线性与大滞后进行合理优化,验证了控制方案的可行性与正确性,达到了工业温度控制标准。王旭东等人通过实验和仿真相结合的方法,利用MATLAB建立了制冷机温度控制系统的仿真平台,并分析总结了PID各参数及约束条件对温度控制的作用规律,实现了控温度±0.1℃/30min的指标。姜赫等人采用工控机与组态软件以及PLC的结构设计了一套由PID控制算法实现参数在线优化,OPC(OLE for Process Control)技术实现各温区温度的局部调整,以达到真空退火炉炉区温度高精度、多温区高均温性和真空度自动控制的目的。李晓斌和寇得民提出了一种多变量预测函数解耦控制方法,通过对真空退火炉进行建模解耦,该方法可以有效的提高温度控制精度。张鹏等人主要用经典调节方法和改进型调节方法,将炉温均匀性检测的参数调节方法进行了系统化与便捷化,为检测人员提供了高效的参数调节指导。黄海茗等人设计了一种基于OMRON CJ2M-CPU31 PLC、先进温控仪与工业以太网的退火炉控制系统。利用自整定PID模块对不同温区进行控制,使得控制系统在温控精度方面的性能得到很大提高。杨闻等人采用了Profibus 总线+RS485总线的多总线网络结构,实现了IPC+PLC+智能仪表集散控制硬件系统。软件设计分为监控程序、控制算法、过程控制程序三部分。
总体来说,由于受西方技术封锁等原因,我国在热处理炉的控制研究方面与发达国家相比起步较晚,核心设备仍依赖进口。由于工业发展带来了与日俱增的高标准生产需求,导致控制策略的研究必须不断探索与进步,因此我国在对热处理过程的温度智能控制研究方面还有很大的上升空间,对热处理炉温度控制采用智能控制策略是工业发展的必然趋势。
1.3 本文主要的内容和工作安排
本论文旨在提出一种基于模糊PID的温度控制设计,以应对磁力搅拌器系统的复杂性,模糊PID结合了模糊逻辑控制的灵活性和PID控制的稳定性,使温控系统具有更好的适应性,结合串级控制可以提高系统的鲁棒性;同时为系统的下位机设计相关的硬件电路,通过Keil编写基于STM32的下位机程序;针对串级时滞过程,提出一种二自由度Smith预估控制方法。主回路采用二自由度Smith预估控制,克 服过程时滞的影响,同时使系统的设定值跟踪特性和干扰抑制特性解耦,通过控制器的设计,使系统同时获得良 好的设定值跟踪特性、干扰抑制特性和鲁棒性。 为方便后期调试和数据记录,编写基于LabVIEW的上位机程序;最终通过仿真和实验验证,将评估此基于模糊PID的高精度温度控制系统在提高温度控制精度以及减小温度超调方面的性能。本文组织架构如图1.5所示。

图1.5 论文组织架构
本文的组织结构如下:
第一章:绪论。阐述了基于模糊PID的高精度温度控制系统的研究背景和意义,分析了高精度温度控制在实验仪器领域的重要性。对国内外温控现状进行了总结分析,同时明确了系统最终所要达到的目标,对系统进行了简要概述,最后提出本文的研究内容和组织架构。
第二章:介绍了PID控制算法、模糊控制算法以及模糊PID控制算法的原理,对磁力搅拌器电阻炉盘这个被控对象的数学模型进行推导,设计了一种基于模糊PID的高精度温度控制算法,并对温度外环中的模糊PID温度控制器设计进行了说明,其中包括变量模糊化、确定模糊规则以及解模糊。
第三章:先是对温度控制器整体的结构做了介绍,然后对其中的各个电路模块进行了逐一介绍,这些电路模块包含:控制器模块、电源模块、电流检测模块、温度检测模块、驱动模块、人机交互模块以及通讯模块,对这些模块电路的设计思路作了介绍,并给出了各个模块的电路图。
第四章:本章主要是对系统的软件进行了说明,包括下位机软件和上位机软件。对温控系统下位机软件所能够实现的功能以及运行思路做了介绍,通过Keil开发平台对下位机程序进行编写,并通过程序流程图介绍了主程序、温度电流采集程序、控制算法程序以及通讯模块程序。然后对上位机的软件功能作了介绍,通过LabVIEW开发平台对上位机程序进行编写,并给出了部分上位机功能模块,对上位机中的主程序、温度监测程序、数据导出程序以及串口配置程序进行了说明。
第五章:为验证基于磁力搅拌器温控系统设计的模糊PID控制器的有效性和优越性,利用Matlab分别搭建了传统PID和模糊PID的仿真框图,并进行了仿真分析。同时王成了系统和和实验平台的搭建,对系统各项性能指标进行测试,本文通过对系统的长时间控温进行分析,实验结果表明一小时内的控温稳定度在±1℃以内;对系统的控温性能进行对比实验,选取特征温度点验证其性能是否优于传统温控系统,主要从超调量、稳态误差和控制精度等方面进行比较,实验表明本文设计的系统控温性能较好,达到预期目标。
第六章:总结与展望。对本学位论文的研究内容进行总结,并对基于模糊PID算法的高精度大范围温控实验中发现的问题与不足提出下一步的改进方案。

2基于模糊PID的高精度温度控制算法
控制算法是整个高精度温控系统的核心,决定系统的控制效果。对于控制器的设计,必须先了解实际的被控对象,根据被控对象的特点来确定合适的控制策略。本次论文设计的温度控制器是以磁力搅拌器的电阻炉盘作为被控对象进行设计的,具有大滞后、非线性以及无法精确获得数学模型的特点,这样的被控对象以单闭环的控制方式可能难以达到高精度温控的要求,因此建立了温度外环和电流内环组成的串级控制模型,并在此基础上加入了模糊控制,设计了一种基于模糊PID的高精度温度控制算法。
2.1 传统PID控制算法
PID控制算法是一种经典的反馈控制方法,由比例(proportion)、积分(integral)、微分(derivative)这三个基本控制项组成,三个控制项可以各自负责处理系统的不同方面,比例项处理当前误差、积分项处理误差的累积、微分项处理误差的变化率,这使得每个控制项的调整和理解相对独立,减少了调参的复杂性。PID控制器通过调整比例系数(Kp)、积分系数(Ki)和微分系数(Kd)来实现系统功能的优化,参数调节的过程通常也是基于经验的。由于PID控制算法相对简单而直观,易于理解和实现,这使得它成为许多工程和控制系统中的首选方案。
如图2.1所示,为PID控制器框图。其控制原理就是用PID控制器的输入值r(t)与反馈值c(t)进行比较,值后得到输入偏差值e(t),将输入偏差e(t)带入到对应的比例环节、积分环节和微分环节之中,进行叠加计算后得到PID控制器的输出值u(t),输出值u(t)作用在被控对象上,得到反馈值c(t),经过多次循环,输入偏差值e(t)会逐渐收敛。

图2.1 PID控制器框图
偏差值e(t)的计算公式如式(2.1)所示:
(2.1)
比例环节的数学表达式如式(2.2)所示:
(2.2)
其中P为比例环节,Kp为比例参数。
比例参数影响响应速度,增大比例系数可以加快系统的响应速度,但过大的比例系数会增大超调同时导致系统振荡。因此,在调整时需要平衡响应速度和稳定性。此外,调节比例系数可以在一定程度上减小稳态误差,但不能完全消除。
积分环节的数学表达式如式(2.3)所示:
(2.3)
其中I为积分环节,Ki为积分参数。
积分参数可以消除稳态误差,特别是对于存在持续误差的系统,积分项能够积累误差并逐渐使系统趋于稳定状态,但是过大的积分参数可能导致系统过度响应,产生振荡。
微分环节的数学表达式如式(2.4)所示:
(2.4)
其中D为微分环节,Kd为微分参数。
微分参数可以预测系统控制偏差的变化趋势,从而在系统还没有产生偏差量的时候,依靠微分调节提前来消除系统偏差,这将极大的提升系统动态性能。增大微分参数可以抑制系统的振荡,提高系统的阻尼,从而减小系统的超调量。但过大的微分参数也会导致系统抗干扰能力变差,同时过大的阻尼也会增加调解时间。
在得到比例环节、积分环节和微分环节各自的表达式后,可以得到关于PID控制器输出量u(t)的表达式,如式(2.5)所示。
(2.5)
对公式(2.5)进行拉普拉斯变换,可以得到PID控制器的传递函数,其形式如式(2.6)所示。
(2.6)
由PID控制器的传递函数可以看出,PID控制器的性能与适当的比例系数Kp、积分系数Ki以及微分系数Kd有直接关系,这三个参数又相互影响,因此在实际使用时,需要根据具体的系统特性和要求,对响应速度、稳定性和鲁棒性进行权衡。
2.2 模糊PID控制算法
尽管PID控制器在实际工程领域中被广泛应用,在面对实际工程中包含非线性、不确定性和复杂性的被控对象时,其局限性逐渐显现,届时就需要更复杂的控制算法。为了克服传统PID的限制,模糊PID控制应运而生。模糊PID控制器融合了模糊控制和传统PID,通过引入模糊控制中的模糊规则和模糊集合的概念,使得控制系统更具智能性和适应性。
2.2.1 模糊控制原理
如图2.2所示,为模糊控制器的结构框图。模糊控制器是由模糊化接口、模糊推理机、知识库和解模糊化接口这四个部分组成,其中知识库又包含模糊化数据库和知识库。其控制流程为:首先将系统的输入量转化为模糊域上的模糊值,经过模糊推理计算后,得到相应的控制量,此时的控制量为一个模糊值,需要经过反模糊化转化为精确值,最后输出。图中e为偏差量,在这里作为实际输入量,E为输入模糊集合,U为输出模糊集合,u为实际输出量。

图2.2 模糊控制器框图
(1)模糊化接口:在模糊控制系统中,模糊化接口是一个可以将实际输入量映射到输入模糊集合的组件,其主要目的是在模糊控制系统中引入不确定的输入模糊集合,以便在之后的模糊规则中进行推理。
(2)知识库:在模糊控制系统中,知识库是一个关键的组成部分,用来存放相应的推理规则和控制参数。模糊化数据库通常保存与隶属度函数相关的知识;模糊规则库用于在输入模糊集合和输出模糊集合之间建立映射,规则库的搭建是通过大量的专家知识和经验,是将实际经验过渡到模糊控制的关键。
(3)模糊推理机:模糊推理机是模糊控制器中的关键组成部分,其作用是利用规则库将输入模糊量映射到对应的输出模糊量,这种推理机制使得系统能够从模糊不确定的输入中得出相对清晰的输出,从而实现模糊控制系统的智能决策。
(4)解模糊化接口:由于执行机构不能响应输出模糊量,因此需要解模糊化接口将输出模糊量转换为实际的控制信号。
2.2.2 模糊PID控制原理
模糊PID控制算法利用模糊控制器对传统PID中的比例参数、积分参数以及微分参数进行实时修正,可以让PID控制器在控制非线性被控对象时的参数一直处于最佳状态,从而获得更好的控制效果。模糊PID的控制框图如图2.3所示。

图2.3 模糊PID控制框图
模糊PID中的模糊控制器有三个输出,输出分别为比例参数修正量∆Kp、积分参数修正量∆Ki和微分参数修正量∆Kd。这样的结构可以看作是三个单变量模糊控制器的并联。
如图2.4所示,为单变量模糊控制器示意图,其中e代表输入的偏差值,ec代表输入的偏差增量,eec代表输入的偏差增量的增量,u代表控制器的输出。

图2.4 单变量模糊控制器示意图
一维单变量模糊控制系统的特点是结构简单,控制规则容易建立,但是其控制精度不高,不能达到较为理想的控制效果,故常用于一阶被控对象。三维单变量控制系统的特点是控制精度很高,但是由于其控制器结构复杂,对控制规则的设计复杂度和控制系统的运行速度都有较高的要求,因此仅用于某些对动态性能要求特别高的场合。二维单变量控系统和一维单变量控制系统相比,其控制精度有了较大提高,同时又能避免三维单变量控制系统对控制规则设计和运算速度要求较大的弊病, 是目前最广泛采用的控制器结构。
最后用模糊控制器输出的比例、积分和微分修正值对PID控制器中原有的比例、积分和微分参数进行修正,其表达式如式(2.7)所示:
(2.7)
式中Kp、Ki和Kd分别为修正之后的比例、积分和微分参数,Kp’、Ki’和Kd’分别为前一次的比例、积分和微分参数。
2.3 系统控制对象
对于控制器的设计首先必须了解被控制对象,根据被控制对象的特性和控制目标来确定控制策略,对同一个被控对象所采用的控制算法很多,当不同的控制算法针对同一个被控对象存在其各自的优劣性时可以考虑将不同的算法相结合以实现控制算法间的互补。本论文设计的温度控制器以磁力搅拌器的电阻炉盘作为被控对象,电阻炉盘的时间常数比较大,相比之下,可控硅调压电路和温度传感器信号转换电路都可以被简单看作是一个比例环节。同时,电阻炉盘也具有大滞后环节,实际可以采用阶跃曲线法研究被控对象的动态特性。
电阻炉盘发热部件在单位时间内做的功,一部分被电阻炉盘吸收,另一部分散失在周围环境中,如公式(2.8)所示:
(2.8)
式中,QF为被电阻炉盘吸收的热量,QOUT为散失的热量,C为电阻炉盘的比热容,m为电阻丝的质量,∆T为电阻炉盘的温度变化量,r为向外传热的热阻。根据能量守恒定律,电阻炉盘所做的功Q为电阻炉盘吸收的热量QF与散失热量QOUT之和。
电阻炉盘发热部件功率如公式(2.9)所示:
(2.9)
其中Q为电阻炉盘发热部件在单位时间内做的功,U为电压,R为电阻炉盘的电阻。
为了反应电压输入量增量对做功的影响,将U=U0+∆U代入式(2.9)得到式(2.10):
(2.10)
其中∆U为电压增量,U0为变化前的电压,∆P为功率增量,P0为变化前的功率,此时电压和功率近似线性化。
对以上公式进行整合,得到公式(2.11):
(2.11)
式中T为时间常数,K为比例常数。
经过拉氏变换,并考虑延时性,最终的到传递函数如式(2.12)所示:
(2.12)
式中τ为延迟时间,s为复变量。
给电阻炉盘一个阶跃信号,通过MATLAB拟合工具进行数据拟合,可以得到被控对象的阶跃曲线。如图2.5所示,是被控对象的阶跃曲线,在阶跃曲线的斜率最大处做一条切线L1,在起始温度处绘制一条与时间轴平行的直线L2,在温度热平衡点处绘制一条与时间轴平行的直线L3,切线L1与L2的交点为B,与L3的交点为A,C点为A点在时间轴上的投影。∆Y代表温度从开始加热到温度平衡的变化值,∆Y与初始温度的比值就是传递函数的比例常数K。B点横坐标就是传递函数的延迟时间τ。线段BC的长度就是传递函数中的时间常数T。

图2.5 被控对象阶跃曲线图
根据实际数据,最终近似得到的传递函数的参数:K=3.6,T=408,τ=40。磁力搅拌器电阻炉盘的传递函数如式(2.13)所示。
(2.13)
2.4 基于模糊PID的高精度温度控制算法设计
传统的温度控制系统大多使用PID调节,但是电阻炉盘的加热过程是非线性的,所以在不同的控温段中,控温所对应的最优控制参数也会发生相应的变化,通常的处理方法是根据经验和试验记录得到该温度段的较优PID参数,但这种方法会严重影响控温精度和控温速度。电阻炉盘通常具有很大的热惯性,在电阻炉盘受控加热后需要经过一段时间才能到达指定温度,响应速度远远慢于其他控制系统,只有反馈的温度值与设定值发生偏差时,控制器才会进行调节,这对温控系统有很大要求。
本文采用的温度控制系统是一个双闭环的控制系统,具体是一个电流内环和一个温度外环组成的串级控制系统。电流内环采用传统的PID控制策略,温度外环采用模糊PID控制策略。如图2.6所示,为基于模糊PID的高精度温度控制算法框图。
在双闭环串级控制模型的基础上引入模糊PID控制算法。通过温度模糊控制器对温度PID控制器中的PID参数进行修正,使其能够自动适应不同温度段的控制要求。对于双闭环串级控制系统,一般会先对电流内环的控制器进行设计。

图2.6 基于模糊PID高精度温度控制算法框图
2.4.1 电流内环设计
电流内环控制器的主要作用是限制电流,采用传统PID控制,在温度上升阶段,电流内环对输入偏差值进行积分运算,利用输入偏差的积分饱和将经过被控对象的电流限制在当前温度段所允许的何理范围之内。而当系统进入其他阶段时,电流内环控制器几乎不会影响系统的正常运作,此时电流内环控制器的作用就是保证输出对于输入的跟随性。电流内环控制器采用PID控制器,其传递函数如式(2.14)所示:
(2.14)
式中,KACR为电流内环控制器的比例参数,τf为电流环节的超前时间常数,τi为积分时间常数。
2.4.2 温度外环设计
根据上述介绍,本温控系统采用的是双闭环结构,以电流环作为内环,可以确保系统在允许的最大电流情况下以最快的速度来提升温度;以温度环作为外环,使得温度的输出可以跟随用户的输入情况进行变化。温度控制器采用模糊PID控制策略。
温度模糊控制器在系统具有较大偏差时起主要调节作用。该控制器为双输入三输出的模糊控制器,可以看作是三个二维单变量模糊控制器的并联,控制器的两个输入量分别是温度偏差量e和温度偏差增量ec。
根据实际控制需求,温度偏差量e、温度偏差增量ec、比例参数修正量∆Kp、积分参数修正量∆Ki和微分参数修正量∆Kd均采用五段式模糊控制论域,即“负大(NB)”、“负小(NS)”、“零(ZO)”、“正小(PS)”、“正大(PB)”5个模糊子集,模糊论域均为[-1,1];其中,两个输入量采用广义钟型隶属度函数,隶属度为[0,1];三个输出量采用三角隶属度函数,隶属度为[0,1]。输入输出隶属度函数曲线如图2.7所示。

图2.6 输入输出隶属度函数曲线
广义钟型隶属度函数如式(2.15)所示:
(2.15)
式中μe,ec(x)为模糊控制器中温度偏差量e与温度偏差增量ec的隶属度,x为模糊控制器的实际输入值,a为函数的宽度参数,b是控制函数形状的参数,通常为正实数,c用于确定曲线中心位置。当b=1时,广义钟型隶属度函数退化为三角形隶属度函数,而当b=2时,它退化为高斯隶属度函数。
输出采用三角隶属度函数,三角隶属度函数如式(2.16)所示:
(2.16)
式中μ∆Kp,∆Ki,∆Kd(x)为模糊控制器中∆Kp、∆Ki和∆Kd的输出隶属度,x为模糊控制器的实际输出值,参数a和c为三角隶属度的两个底角位置,参数b为三角隶属度的顶角位置。
参数的整定规则是模糊控制的核心部分,模糊控制规则实际上是根据现场实际情况以及专家经验,对控制过程加以总结而得到的模糊条件语句的集合,在实际的设计中,这些模糊条件语句通常被归纳总结为表格的形式,即模糊控制规则表。对于二维单变量模糊控制器,模糊规则语句的表达形式一般为:“IF A AND B THEN C”,这一形式的数学表达如式(2.17)所示:
(2.17)
其中,i代表规则的序列,Ri表示第i条规则蕴含的模糊关系,Ai和Bi分别表示第i条规则中的输入e和ec,Ci表示第i条规则下的输出。
温度模糊控制器的两个输入量E和EC分别代表模糊化之后的温度偏差和模糊化之后的温度偏差增量,输出量U代表模糊控制器的输出模糊量。对温度模糊控制器中的25条控制规则进行整合得到模糊控制规则表,如表2.1、表2.2和表2.3所示。公式(2.18)表示25条控制规则总的模糊关系。
(2.18)
表2.1 ∆Kp模糊控制规则表
e ∆Kp
ec NB NS ZO PS PB
NB PB PS PS PS ZO
NS PS PS PS ZO NS
ZO PS PS ZO NS NS
PS PS ZO NS NS NS
PB ZO NS NS NS NB
表2.2 ∆Ki模糊控制规则表
e ∆Kp
ec NB NS ZO PS PB
NB NB NB NS NS ZO
NS NS NS NS ZO PS
ZO NS NS ZO PS PS
PS NS ZO PS PS PS
PB ZO PS PS PB PB
表2.3 ∆Kd模糊控制规则表
e ∆Kp
ec NB NS ZO PS PB
NB PS ZO ZO ZO PB
NS NB NS NS ZO PS
ZO NB NS NS ZO PS
PS NB NS NS ZO PS
PB PS ZO ZO ZO PB
对于模糊控制器而言,利用模糊控制规则将模糊输入量推理得到的输出结果也是模糊量,这就需要用控制器把模糊量转换成精确量,这个过程就是解模糊的过程,本文采用重心法来实现控制器的解模糊操作。
重心法是目前在模糊控制中比较常见的一种解模糊方法,其原理是通过对隶属度函数进行加权平均,考虑整个模糊集合的形状和分布,从而得到一个具体的模糊值解。这个方法在实际应用中相对简单,特别适用于对称或近似对称的隶属度函数。如式(2.19)所示,是利用重心法解模糊的公式:
(2.19)
式中v0为模糊控制器输出去模糊化之后清晰值,即输出的∆Kp、∆Ki和∆Kd,μN(zi)为隶属度,zi为模糊量化值。
根据温度模糊控制器的实现方法,对比例参数在线修正模糊控制器进行模糊化、模糊推理和解模糊操作后,可以得到模糊查询表。如表2.4、表2.5和表2.6所示,分别是∆Kp输出值查询表、∆Ki输出值查询表以及∆Kd输出值查询表。
根据上述三张输出值查询表可以得到对应的输出曲面图,如图2.7所示。

图2.7 模糊控制器输出曲面
表2.4 ∆Kp输出值查询表
e ∆Kp
ec -1 -0.5 0 0.5 1
-1 0.808 0.501 0.478 0.444 0
-0.5 0.445 0.445 0.444 0.000817 -0.444
0 0.444 0 0 -0.443 -0.478
0.5 0.444 0 -0.444 -0.479 -0.501
1 0.0215 0.00714 -0.478 -0.501 -0.808
表2.5 ∆Ki输出值查询表
e ∆Ki
ec -1 -0.5 0 0.5 1
-1 -0.808 -0.808 -0.478 -0.444 0
-0.5 -0.445 -0.445 -0.444 -0.000817 0.444
0 -0.444 0 0 0.443 0.478
0.5 -0.444 0 0.444 0.479 0.501
1 -0.0215 -0.00714 0.478 0.807 0.808
表2.6 ∆Kd输出值查询表
e ∆Kd
ec -1 -0.5 0 0.5 1
-1 0.442 -0.0013 -0.0215 0.00113 0.754
-0.5 -0.681 -0.445 -0.478 0.000312 0.479
0 -0.754 -0.251 -0.478 -0.000817 0.478
0.5 -0.682 -0.445 -0.478 0.00029 0.479
1 0.443 -0.01 -0.0215 0.00113 0.754
最后用模糊控制器计算得到的∆Kp、∆Ki和∆Kd对原有的比例、积分和微分参数进行实时修正。
2.5 二自由度Smith预估控制
二自由度Smith预估控制是一种先进的控制策略,旨在提高系统的控制精度和稳定性。其基本原理在于通过引入一个预估器来补偿被控对象的动态特性,从而实现对系统的快速而准确的控制。在二自由度Smith预估控制中,预估器根据系统的历史数据和模型预测未来的输出响应。这个预测值与实际输出值进行比较,生成一个误差信号。这个误差信号经过控制器处理后,生成控制输入信号,用于调整被控对象的输出。通过这种方式,预估器能够提前感知到系统的变化,并提前作出调整,从而实现对系统的快速响应。与传统的单自由度控制相比,二自由度Smith预估控制具有更高的灵活性和精度。通过调整预估器的参数,可以控制系统的响应速度和稳定性。同时,二自由度Smith预估控制还考虑了系统的非线性特性和不确定性,通过在线调整控制参数,实现对系统动态特性的实时适应。总的来说,二自由度Smith预估控制通过引入预估器和二自由度设计,提高了系统的控制精度和稳定性。这种控制策略特别适用于具有复杂动态特性和不确定性的系统,如工业生产过程、航空航天等领域。通过实际应用,二自由度Smith预估控制已经证明了其在提高系统性能、降低能耗和减少故障率等方面的优势。

图2.8 二自由度Smith预估串级控制结构图
主、副过程均设为一阶惯性加时滞的形式,高 阶过程也可以通过降阶处理简化为一阶惯性加时滞模型。
取:

K1,K2,T1,T2分别为主、副过程的稳态增益、时间常数和滞后时间。
副回路的设定值跟随特性和干扰抑制特性如下:

2.5 本章小结
本章首先介绍了PID控制算法和模糊控制算法的原理,之后又在PID控制和模糊控制的基础上介绍了模糊PID控制算法,然后对磁力搅拌器电阻炉盘这个被控对象的数学模型进行推导,利用阶跃曲线法得到传递函数中的T为时间常数,K为比例常数以及延时时间τ,最后设计了一种基于模糊PID的高精度温度控制算法,其中包含一个电流内环和一个温度外环组成的串级控制算法,对温度外环中的模糊PID温度控制器设计进行了说明,其中包括变量模糊化、确定模糊规则以及解模糊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值