矩阵的条件数(condition number)是数值分析和线性代数中的一个重要概念,它刻画了矩阵某方面的特性。
为矩阵 A 的条件数。结合上面提到的几何意义,条件数同时描述了矩阵A 对向量的拉伸能力和压缩能力,换句话说,令向量发生形变的能力。条件数越大,向量在变换后越可能变化得越多。
奇异值分解(SVD)也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

其中 U是一个 m * m 的矩阵,
Σ
\Sigma
Σ 是一个m * n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n * n的矩阵。
U 和 V都是酉矩阵,即满足

矩阵条件数是衡量矩阵运算稳定性的关键指标,它描述了矩阵对输入向量的放大或压缩效应。大条件数意味着矩阵操作可能导致数值误差显著增加。奇异值分解(SVD)则提供了一种对任意矩阵进行分解的方法,即使在非方阵情况下。SVD将矩阵分解为酉矩阵U、奇异值矩阵Σ和酉矩阵V,奇异值决定了矩阵的秩和条件数。在数值计算中,SVD常用于求解病态问题,因为其能揭示矩阵的弱和强特征。

1799

被折叠的 条评论
为什么被折叠?



