机器人导航(仿真)(一)——SLAM建图

本文档详细介绍了如何在ROS环境中使用gmapping进行SLAM建图,包括gmapping的基本概念、节点配置、参数设置、坐标变换及使用步骤。通过创建launch文件启动gmapping,控制机器人运动并在rviz中实时显示地图。最后,讲解了如何保存和读取生成的地图文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导航实现01_SLAM建图

参考视频:【奥特学园】ROS机器人入门课程《ROS理论与实践》零基础教程_哔哩哔哩_bilibili

参考文档:http://www.autolabor.com.cn/book/ROSTutorials/

SLAM算法有多种,当前我们选用gmapping,后续会再介绍其他几种常用的SLAM实现。

1.gmapping简介

gmapping 是ROS开源社区中较为常用且比较成熟的SLAM算法之一,gmapping可以根据移动机器人里程计数据和激光雷达数据来绘制二维的栅格地图,对应的,gmapping对硬件也有一定的要求:

  • 该移动机器人可以发布里程计消息
  • 机器人需要发布雷达消息(该消息可以通过水平固定安装的雷达发布,或者也可以将深度相机消息转换成雷达消息)

关于里程计与雷达数据,仿真环境中可以正常获取的,不再赘述,栅格地图如案例所示。

gmapping 安装前面也有介绍,命令如下:

sudo apt install ros-<ROS版本>-gmapping

2.gmapping节点说明

gmapping 功能包中的核心节点是:slam_gmapping。为了方便调用,需要先了解该节点订阅的话题、发布的话题、服务以及相关参数。

2.1订阅的Topic

tf (tf/tfMessage)

  • 用于雷达、底盘与里程计之间的坐标变换消息。

scan(sensor_msgs/LaserScan)

  • SLAM所需的雷达信息。
2.2发布的Topic

map_metadata(nav_msgs/MapMetaData)

  • 地图元数据,包括地图的宽度、高度、分辨率等,该消息会固定更新。

map(nav_msgs/OccupancyGrid)

  • 地图栅格数据,一般会在rviz中以图形化的方式显示。

~entropy(std_msgs/Float64)

  • 机器人姿态分布熵估计(值越大,不确定性越大)。
2.3服务

dynamic_map(nav_msgs/GetMap)

  • 用于获取地图数据。
2.4参数

~base_frame(string, default:"base_link")

  • 机器人基坐标系。

~map_frame(string, default:"map")

  • 地图坐标系。

~odom_frame(string, default:"odom")

  • 里程计坐标系。

~map_update_interval(float, default: 5.0)

  • 地图更新频率,根据指定的值设计更新间隔。

~maxUrange(float, default: 80.0)

  • 激光探测的最大可用范围(超出此阈值,被截断)。

~maxRange(float)

  • 激光探测的最大范围。

.... 参数较多,上述是几个较为常用的参数,其他参数介绍可参考官网。

2.5所需的坐标变换

雷达坐标系→基坐标系

  • 一般由 robot_state_publisher 或 static_transform_publisher 发布。

基坐标系→里程计坐标系

  • 一般由里程计节点发布。
2.6发布的坐标变换

地图坐标系→里程计坐标系

  • 地图到里程计坐标系之间的变换。

3.gmapping使用

3.1编写gmapping节点相关launch文件

新建功能包

名字为 nav_demo ,输入依赖包如下:

gmapping  map_server  amcl  move_base

新建 launch 文件夹,再新建 nav01_slam.launch 文件

launch文件编写可以参考 github 的演示 launch文件:https://github.com/ros-perception/slam_gmapping/blob/melodic-devel/gmapping/launch/slam_gmapping_pr2.launch

复制并修改如下:

<launch>
    <!--仿真环境下,将该参数设置为 true-->
    <param name="use_sim_time" value="true"/>
    <!--gmapping 节点-->
    <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen">
      <!--设置雷达话题-->
      <remap from="scan" to="scan"/>
      <!-- 关键参数:坐标系-->
      <param name="base_frame" value ="base_footprint" />
      <param name="map_frame" value ="map" />
      <param name="odom_frame" value ="odom" />


      <param name="map_update_interval" value="5.0"/>
      <param name="maxUrange" value="16.0"/>
      <param name="sigma" value="0.05"/>
      <param name="kernelSize" value="1"/>
      <param name="lstep" value="0.05"/>
      <param name="astep" value="0.05"/>
      <param name="iterations" value="5"/>
      <param name="lsigma" value="0.075"/>
      <param name="ogain" value="3.0"/>
      <param name="lskip" value="0"/>
      <param name="srr" value="0.1"/>
      <param name="srt" value="0.2"/>
      <param name="str" value="0.1"/>
      <param name="stt" value="0.2"/>
      <param name="linearUpdate" value="1.0"/>
      <param name="angularUpdate" value="0.5"/>
      <param name="temporalUpdate" value="3.0"/>
      <param name="resampleThreshold" value="0.5"/>
      <param name="particles" value="30"/>
      <param name="xmin" value="-50.0"/>
      <param name="ymin" value="-50.0"/>
      <param name="xmax" value="50.0"/>
      <param name="ymax" value="50.0"/>
      <param name="delta" value="0.05"/>
      <param name="llsamplerange" value="0.01"/>
      <param name="llsamplestep" value="0.01"/>
      <param name="lasamplerange" value="0.005"/>
      <param name="lasamplestep" value="0.005"/>
    </node>
    <node pkg="joint_state_publisher" name="joint_state_publisher" type="joint_state_publisher" />
    <node pkg="robot_state_publisher" name="robot_state_publisher" type="robot_state_publisher" />
    <node pkg="rviz" type="rviz" name="rviz"  />
</launch>

关键代码解释:

<remap from="scan" to="scan"/><!-- 雷达话题 -->
<param name="base_frame" value="base_footprint"/><!--底盘坐标系-->
<param name="odom_frame" value="odom"/> <!--里程计坐标系-->

执行

1.先启动 Gazebo 仿真环境(此过程略)

2.然后再启动地图绘制的 launch 文件:

roslaunch 包名 launch文件名

3.启动键盘键盘控制节点,用于控制机器人运动建图

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

4.在 rviz 中添加组件,显示栅格地图

具体如下:

新建两个窗口,启动 gazebo

cys@ubuntu:~/demo05_ws$ source ./devel/setup.bash
cys@ubuntu:~/demo05_ws$ roslaunch urdf02_gazebo demo03_env.launch

再输入如下命令启动rviz

cys@ubuntu:~/demo05_ws$ source ./devel/setup.bash
cys@ubuntu:~/demo05_ws$ roslaunch nav_demo nav01_slam.launch

新建命令行,输入命令,让机器人运动

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

最后,就可以通过键盘控制gazebo中的机器人运动,同时,在rviz中可以显示gmapping发布的栅格地图数据了,下一步,还需要将地图单独保存。

 4.地图保存

在 launch 里新建 nav02_map_save.launch

<launch>
    <arg name="filename" value="$(find nav_demo)/map/nav" />
    <node name="map_save" pkg="map_server" type="map_saver" args="-f $(arg filename)" />
</launch>

在功能包 nav_demo下新建 文件夹 map,运行 

cys@ubuntu:~/demo05_ws$ source ./devel/setup.bash
cys@ubuntu:~/demo05_ws$ roslaunch nav_demo nav02_map_save.launch 

 在指定路径下会生成两个文件,xxx.pgm 与 xxx.yaml,打开 nav.pgm 查看图

  

 4.地图读取

在 launch 里新建 nav03_map_server.launch

<launch>

    <arg name="map" default="nav.yaml" />
    <node pkg="map_server" type="map_server" name="map_server" args="$(find nav_demo)/map/$(arg map)" />

 </launch>

运行,就将地图信息发不出去了

cys@ubuntu:~/demo05_ws$ source ./devel/setup.bash
cys@ubuntu:~/demo05_ws$ roslaunch nav_demo nav03_map_server.launch 

再运行 rviz ,在命令行输入 rviz ,增加 Map, Topic 为 /map

 地图 yaml 参数详解

#1.声明地图图片资源的路径
image: /home/cys/demo05_ws/src/nav_demo/map/nav.pgm
#2.地图刻度尺,单位是 米/像素
resolution: 0.050000
#3.地图的相对位姿(按照右手坐标系,地图右下角相对于rviz中的原点的位姿)
#值1:x方向上的偏移量
#值2:y方向上的偏移量
#值3:地图的偏航角度(单位是弧度)
origin: [-50.000000, -50.000000, 0.000000]

# 地图中的障碍物判断:
# 最终地图结果:白色是可通行区域,黑色是障碍物,蓝灰是未知区域
# 判断规则:
# 1.地图中的每个像素都有取值[0,255] 白色:255  黑色:0
# 2.根据像素值计算一个比例:p = (255-x)/255 白色:0  黑色1
# 3.判断是否是障碍物,p>occupied_thresh 就是障碍物,p<free_thresh 就是无物,可以自由通行

#4.去反
negate: 0
#5.占用阈值
occupied_thresh: 0.65
#6.空闲阈值
free_thresh: 0.196
### 使用ROS进行机器人小车SLAM #### 启动激光雷达 为了使机器人能够感知周围环境并构,首先需要启动激光雷达设备。这通常通过特定的驱动程序完成,在终端中输入命令来加载相应的节点[^1]。 ```bash roslaunch hokuyo_node hokuyo_test.launch ``` 此命令会激活 Hokuyo 激光扫描仪,并发布 `/scan` 主题上的距离测量数据流给其他订阅者使用。 #### 集成雷达传感器到模型 对于模拟环境中使用的虚拟小车而言,则需编辑其描述文件(通常是 `.xacro` 文件),加入雷达组件定义以及相应参数设置部分;之后调整 `launch` 文件确保这些改动生效[^2]。 ```xml <!-- 添加Laser Sensor --> <joint name="laser_joint" type="fixed"> <origin xyz="0.1 0 0.2" rpy="0 0 0"/> <parent link="base_link"/> <child link="hokuyo_link"/> </joint> <link name="hokuyo_link"> <!-- 描述Hokuyo Laser几何形状和其他属性 --> </link> <!-- 修改Launch File以包含新添加的内容 --> <include file="$(find my_robot)/launch/sensors.launch"/> ``` #### 执行激光 SLAM 流程 旦硬件连接正常工作或仿真平台已准备好,就可以着手于执行实际的地过程: - 开启 SLAM 功能:利用预设好的 launch 文件键开启整个流程。 ```bash roslaunch gmapping slam_gmapping_pr2.launch ``` 上述指令将会初始化 GMapping 节点以及其他必要的支持模块,如 TF 变换树维护器等。 - 小车自主探索未知区域的同时不断更新内部表示的地结构,直到覆盖所有可访问空间为止。 - 导航与避障功能允许车辆安全地穿梭其间而不发生碰撞事故。 #### 地保存及后续处理 当认为已经获得满意的拓扑关系表达形式后,可以将其持久化存储下来供日后重访之用: ```bash rosrun map_server map_saver -f ~/my_map ``` 该操作会在指定路径下生成两个文件——个是二进制格式的地(`*.pgm`) ,另个则是对应的 YAML 格式的元信息文档(`*.yaml`) [^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蔡军帅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值