目录
三.YOLOV3
1.在座的各位都是渣渣
YOLOV3开创性的提出一种数据在第二象限的折线图,以表示识别速度极快
2.Feature Extractor
随着ResNet提出并逐渐被应用,YOLOV3提出了一种网络层数更多的DarkNet-53来代替V2中的Darknet-19,并且同实现对比DarkNet的浮点运算更少,速度要比ResNet-152更快
3.Anchor Boxes
和V2选择5个先验框不同的是,V3根据大中小三种Scale共选择9个先验框,并且使用类似于特征金字塔网络的概念使三个Scale间相互融合,以更好的预测图片中更小的物体
可以通过上采样将13*13(插值法)变化为26*26,然后和26*26进行融合,52*52同理融合。
4.softmax
softmax改进,预测多标签任务.
使用logistic激活函数预测每一个类别是/不是
5.END
2020年YOLO之父Joseph Redmon因故宣布推出CV领域,功成身退
6.Innovation point
1>V3版本结合15年提出的《ResNet》这篇论文,使用以ResNet为核心思想的DarkNet-53网络主干更换V2版本中DarkNet-19
2>为了更好的预测小物体,使用特征金字塔网络的概念代替V2中特征融合
3>开创性的提出一种数据在第二象限以彰显自身模型优势的折线图
4>softmax进行改进,以预测多标签任务