概率论之 一维随机变量的期望,方差,协方差

前言

随机变量的期望、方差、协方差性质非常重要,但又比较容易忘,记录一下加深记忆。首先是一维

一维系统

假设系统状态是由单成分构成,将其表示为一维随机变量 X X X

期望

公式

如果变量 X X X的概率密度为 p ( x ) p(x) p(x),则期望可表示为:
E ( X ) = ∫ − inf ⁡ + i n f x p ( x ) d x E(X)=\int_{-\inf}^{+inf} xp(x)dx E(X)=inf+infxp(x)dx

性质

无条件服从叠加性、线性:
E ( c ) = c , c ∈ R E ( c X ) = c E ( X ) , c ∈ R E ( X + Y ) = E ( X ) + E ( Y ) \begin{aligned} &E(c)=c,c \in R \\ &E(cX)=cE(X), c \in R \\ &E(X+Y)=E(X)+E(Y)\\ \end{aligned} E(c)=c,cRE(cX)=cE(X),cRE(X+Y)=E(X)+E(Y)
如果两个随机变量 X , Y X, Y X,Y相互独立:
E ( X Y ) = E ( X ) E ( Y ) \begin{aligned} & E(XY)=E(X)E(Y) \end{aligned} E(XY)=E(X)E(Y)

方差

公式

变量 X X X的期望为 E ( X ) E(X) E(X),其方差可表示为:
D ( X ) = E ( ( X − E ( X ) ) 2 ) = E ( X 2 ) − E 2 ( X ) D(X)=E((X-E(X))^2) =E(X^2) - E^2(X) D(X)=E((XE(X))2)=E(X2)E2(X)

性质

无条件服从以下性质:
D ( c ) = 0 , c ∈ R D ( c X + d ) = c 2 D ( X ) , c , d ∈ R D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) \begin{aligned} & D(c)=0, c \in R \\ & D(cX+d)=c^2D(X), c,d \in R \\ & D(X \pm Y)=D(X)+D(Y) \pm 2Cov(X,Y) \end{aligned} D(c)=0,cRD(cX+d)=c2D(X),c,dRD(X±Y)=D(X)+D(Y)±2Cov(X,Y)

协方差

公式

两个一维随机变量 X , Y X,Y X,Y的协方差可以表示为:
C o v ( X , Y ) = E ( ( X − E ( X ) ) ( Y − E ( Y ) ) ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E((X-E(X))(Y-E(Y)))=E(XY) - E(X)E(Y) Cov(X,Y)=E((XE(X))(YE(Y)))=E(XY)E(X)E(Y)

性质

无条件服从以下性质:
C o v ( X , Y ) = C o v ( Y , X ) C o v ( a X , b Y ) = a b C o v ( X , Y ) , a , b ∈ R C o v ( X + a , Y + b ) = C o v ( X , Y ) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) \begin{aligned} & Cov(X,Y)=Cov(Y,X) \\ & Cov(aX, bY)=abCov(X,Y), a,b \in R \\ & Cov(X+a,Y+b) = Cov(X, Y) \\ & Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) \\ \end{aligned} Cov(X,Y)=Cov(Y,X)Cov(aX,bY)=abCov(X,Y),a,bRCov(X+a,Y+b)=Cov(X,Y)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

自己的协方差就是方差:
C o v ( X , X ) = E ( X 2 ) − E 2 ( X ) = D ( X ) Cov(X,X)=E(X^2)-E^2(X)=D(X) Cov(X,X)=E(X2)E2(X)=D(X)

相关系数

相关系数用来表征两个随机变量 X , Y X,Y X,Y的线性相关程度:
ρ ( X , Y ) = C o v ( X , Y ) D ( X ) D ( Y ) ∣ ρ ∣ ≤ 1 \begin{aligned} \rho(X,Y) & =\frac {Cov(X,Y)}{\sqrt{D(X)D(Y)}} \\ |\rho| &\le1 \end{aligned} ρ(X,Y)ρ=D(X)D(Y) Cov(X,Y)1

ρ > 0 \rho>0 ρ>0:正相关
ρ < 0 \rho<0 ρ<0:负相关
ρ = 1 \rho=1 ρ=1:不相关

相关性与独立性

独立性:两个变量 X , Y X,Y X,Y间没有任何关系, X , Y X,Y X,Y的取值互不影响,则 X , Y X,Y XY相互独立。

相关性:统计上的相关性,一般是指线性相关,那么肯定还有非线性相关性。相关系数 ρ \rho ρ只能衡量线性相关性。

线性相关必不独立,线性无关却可能非线性相关,因此线性无关的随机变量不一定独立,即 ρ X Y = 0 \rho_{XY}=0 ρXY=0并不代表 X , Y X,Y X,Y独立。

后记

稍后记录多维随机变量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值