矩阵分析之 实矩阵分解(5)矩阵分解法总结

前言

之前的四篇内容分别介绍了特征分解,SVD分解,LU和PLU分解,Cholesky分解,满秩分解和QR分解,现在来进行总结。

特征分解(谱分解)

对于n阶方阵A,如果具有n个线性无关的特征向量,则可以进行特征分解:
A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1
其中, P P P A A A的特征向量组成的矩阵, Λ \Lambda Λ P P P对应的特征值对角矩阵。

特征分解的速度一般,精度一般。当特征值固定从大到小排列时,分解结果唯一。

SVD分解

对于任意矩阵 A ∈ R m × n A\in R^{m\times n} ARm×n,都可以进行SVD奇异值分解:
A = U Σ V T A=U\Sigma V^T A=UΣVT
其中, U ∈ R m × m U\in R^{m\times m} URm×m A A T AA^T AAT的正交对角化的正交矩阵, V ∈ R n × n V\in R^{n\times n} VRn×n A A T AA^T AAT A T A A^TA ATA的正交对角化的正交矩阵, Σ ∈ R m × n = [ d i a g { λ A T A } 0 ] , m > n ; Σ ∈ R m × n = [ d i a g { λ A A T } 0 ] , m < n \Sigma\in R^{m\times n}=\begin{bmatrix} diag\{\sqrt\lambda_{A^TA}\} \\ 0 \end{bmatrix},m>n;\Sigma\in R^{m\times n}=\begin{bmatrix} diag\{\sqrt\lambda_{AA^T}\} \quad 0 \end{bmatrix},m<n ΣRm×n=[diag{λ ATA}0],m>n;ΣRm×n=[diag{λ AAT}0],m<n,即 A A A的奇异值矩阵。

SVD速度较慢,精度很好。当奇异值固定从大到小排列时,分解结果唯一。

LU和PLU分解

对于可逆方阵 A ∈ R n × n A\in R^{n\times n} ARn×n,可以分解为下三角矩阵和上三角矩阵的乘积:
A = L U A=LU A=LU

实际使用为了提升稳定性,一般使用PLU分解,P是一个行换换矩阵:
A = P L U A=PLU A=PLU

PLU分解速度较快,精度一般。当 L L L是单位下三角矩阵或 U U U是单位上三角矩阵,分解结果唯一。

Cholesky分解(LLT,LDLT分解)

对于对称正定矩阵 A ∈ R n × n A\in R^{n\times n} ARn×n,可以进行Cholesky分解为一个下三角矩阵与自身转置的乘积:
A = L L T A=LL^T A=LLT

Cholesky分解速度很快,精度一般。Cholesky分解结果唯一。

对于可逆对称矩阵 A ∈ R n × n A\in R^{n\times n} ARn×n,可以进行LDLT分解为:
A = L D L T A=LDL^T A=LDLT
其中 D ∈ R n × n D\in R^{n\times n} DRn×n是一个对角矩阵。

LDLT分解速度较快,精度较好。LDLT分解结果是唯一的。

满秩分解

对于任意矩阵 A ∈ R m × n , r a n k ( A ) = r A\in R^{m\times n},rank(A)=r ARm×n,rank(A)=r,可以分解为两个矩阵的乘积:
A m × n = B m × r C r × n , r a n k ( B ) = r a n k ( C ) = r A_{m\times n}=B_{m\times r}C_{r\times n},rank(B)=rank(C)=r Am×n=Bm×rCr×n,rank(B)=rank(C)=r

满秩分解的结果是不唯一的。

QR分解

对于任意矩阵 A ∈ R m × n , m ≥ n A\in R^{m\times n},m\ge n ARm×nmn,都可以分解为:
A m × n = Q m × m R m × n A_{m\times n}=Q_{m\times m}R_{m\times n} Am×n=Qm×mRm×n
其中,Q是一个正交矩阵, R R R是一个上三角矩阵;

或者分解为:
A m × n = Q m × n R n × n A_{m\times n}=Q_{m\times n}R_{n\times n} Am×n=Qm×nRn×n
其中,Q是一个正交列向量组, R R R是一个上三角矩阵。

QR分解速度较快,精度较好。当 A A A列满秩,并且 R R R的对角元都为正数时,分解结果唯一。

使用场景推荐

对于超定方程组求解,追求速度可以使用QR分解,追求稳定性和精度可以使用SVD分解。

对于适定方程组求解,可以使用PLU分解。

对于线性方程组的系数矩阵为对称矩阵,可以使用LDLT和Cholesky分解。

总而言之,QR分解,SVD分解和PLU分解的适用面更加广泛,解方程时优先考虑这三种矩阵分解方法。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值