sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略

sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略

 

目录

MinMaxScaler简介

MinMaxScaler函数解释

MinMaxScaler底层代码

MinMaxScaler的使用方法

1、基础案例


 

 

MinMaxScaler简介

MinMaxScaler函数解释

    """Transforms features by scaling each feature to a given range.
    
    This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one.
    
    The transformation is given by::
    
    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min
    
    where min, max = feature_range.
    
    This transformation is often used as an alternative to zero mean, unit variance scaling.
    
    Read more in the :ref:`User Guide <preprocessing_scaler>`.
“”通过将每个特性缩放到给定范围来转换特性。

这个估计量对每个特征进行了缩放和单独转换,使其位于训练集的给定范围内,即在0和1之间

变换由::

    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min

其中,min, max = feature_range。

这种转换经常被用来替代零均值,单位方差缩放。

请参阅:ref: ' User Guide  '。</preprocessing_scaler>
    Parameters
    ----------
    feature_range : tuple (min, max), default=(0, 1)
    Desired range of transformed data.
    
    copy : boolean, optional, default True
    Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array).
参数

feature_range: tuple (min, max),默认值=(0,1)
所需的转换数据范围。

复制:布尔值,可选,默认为真
设置为False执行插入行规范化并避免复制(如果输入已经是numpy数组)。
    Attributes
    ----------
    min_ : ndarray, shape (n_features,)
    Per feature adjustment for minimum.
    
    scale_ : ndarray, shape (n_features,)
    Per feature relative scaling of the data.
    
    .. versionadded:: 0.17
    *scale_* attribute.
    
    data_min_ : ndarray, shape (n_features,)
    Per feature minimum seen in the data
    
    .. versionadded:: 0.17
    *data_min_*
    
    data_max_ : ndarray, shape (n_features,)
    Per feature maximum seen in the data
    
    .. versionadded:: 0.17
    *data_max_*
    
    data_range_ : ndarray, shape (n_features,)
    Per feature range ``(data_max_ - data_min_)`` seen in the data
    
    .. versionadded:: 0.17
    *data_range_*

属性
 ----------
min_: ndarray, shape (n_features,)
每个功能调整为最小。

scale_: ndarray, shape (n_features,)
每个特征数据的相对缩放。

. .versionadded:: 0.17
* scale_ *属性。

data_min_: ndarray, shape (n_features,)
每个特征在数据中出现的最小值

. .versionadded:: 0.17
* data_min_ *

data_max_: ndarray, shape (n_features,)
每个特征在数据中出现的最大值


. .versionadded:: 0.17
* data_max_ *
data_range_: ndarray, shape (n_features,)
在数据中看到的每个特性范围' ' (data_max_ - data_min_) ' '


. .versionadded:: 0.17
* data_range_ *

 

MinMaxScaler底层代码

class MinMaxScaler Found at: sklearn.preprocessing.data

class MinMaxScaler(BaseEstimator, TransformerMixin):

    def __init__(self, feature_range=(0, 1), copy=True):
        self.feature_range = feature_range
        self.copy = copy
    
    def _reset(self):
        """Reset internal data-dependent state of the scaler, if 
         necessary.

        __init__ parameters are not touched.
        """
    # Checking one attribute is enough, becase they are all set 
     together
    # in partial_fit
        if hasattr(self, 'scale_'):
            del self.scale_
            del self.min_
            del self.n_samples_seen_
            del self.data_min_
            del self.data_max_
            del self.data_range_
    
    def fit(self, X, y=None):
        """Compute the minimum and maximum to be used for later 
         scaling.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to compute the per-feature minimum and 
             maximum
            used for later scaling along the features axis.
        """
        # Reset internal state before fitting
        self._reset()
        return self.partial_fit(X, y)
    
    def partial_fit(self, X, y=None):
        """Online computation of min and max on X for later scaling.
        All of X is processed as a single batch. This is intended for 
         cases
        when `fit` is not feasible due to very large number of 
         `n_samples`
        or because X is read from a continuous stream.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to compute the mean and standard deviation
            used for later scaling along the features axis.

        y : Passthrough for ``Pipeline`` compatibility.
        """
        feature_range = self.feature_range
        if feature_range[0] >= feature_range[1]:
            raise ValueError(
                "Minimum of desired feature range must be smaller"
                " than maximum. Got %s." % 
                str(feature_range))
        if sparse.issparse(X):
            raise TypeError("MinMaxScaler does no support sparse 
             input. "
                "You may consider to use MaxAbsScaler instead.")
        X = check_array(X, copy=self.copy, warn_on_dtype=True, 
         estimator=self, dtype=FLOAT_DTYPES)
        data_min = np.min(X, axis=0)
        data_max = np.max(X, axis=0)
        # First pass
        if not hasattr(self, 'n_samples_seen_'):
            self.n_samples_seen_ = X.shape[0]
        else:
            data_min = np.minimum(self.data_min_, data_min)
            data_max = np.maximum(self.data_max_, data_max)
            self.n_samples_seen_ += X.shape[0] # Next steps
        data_range = data_max - data_min
        self.scale_ = (feature_range[1] - feature_range[0]) / 
         _handle_zeros_in_scale(data_range)
        self.min_ = feature_range[0] - data_min * self.scale_
        self.data_min_ = data_min
        self.data_max_ = data_max
        self.data_range_ = data_range
        return self
    
    def transform(self, X):
        """Scaling features of X according to feature_range.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Input data that will be transformed.
        """
        check_is_fitted(self, 'scale_')
        X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES)
        X *= self.scale_
        X += self.min_
        return X
    
    def inverse_transform(self, X):
        """Undo the scaling of X according to feature_range.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Input data that will be transformed. It cannot be sparse.
        """
        check_is_fitted(self, 'scale_')
        X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES)
        X -= self.min_
        X /= self.scale_
        return X

 

MinMaxScaler的使用方法

1、基础案例

    >>> from sklearn.preprocessing import MinMaxScaler
    >>>
    >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
    >>> scaler = MinMaxScaler()
    >>> print(scaler.fit(data))
    MinMaxScaler(copy=True, feature_range=(0, 1))
    >>> print(scaler.data_max_)
    [  1.  18.]
    >>> print(scaler.transform(data))
    [[ 0.    0.  ]
    [ 0.25  0.25]
    [ 0.5   0.5 ]
    [ 1.    1.  ]]
    >>> print(scaler.transform([[2, 2]]))
    [[ 1.5  0. ]]

 

 

 

 

 

 

 

 

 

 

 

发布了1649 篇原创文章 · 获赞 7295 · 访问量 1321万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503

分享到微信朋友圈

×

扫一扫,手机浏览