Dataset之GermanCreditData:GermanCreditData数据集的简介、下载、使用方法之详细攻略

Dataset之GermanCreditData:GermanCreditData数据集的简介、下载、使用方法之详细攻略

目录

GermanCreditData数据集的简介

1、数据集描述

GermanCreditData数据集的下载

GermanCreditData数据集的使用方法


GermanCreditData数据集的简介

        德国信用数据,该数据集来自汉堡大学统计与计量研究所的教授,Hans Hofmann博士所收集制作。

1、数据集描述

备注:DM指德国货币—马克,1DM≈11RMB

字段英文

中文

描述

7个数值型

Duration in month

月持续时间

Credit amount

信用额度

Installment rate in percentage of disposable income

分期付款率占可支配收入的百分比

Present residence since

现居住地至今

Age in years

年龄

Number of existing credits at this bank

这家银行的现有信贷数量

Number of people being liable to provide maintenance for

有责任为其提供维修服务的人数

13个类别型

Status of existing checking account

现有支票账户的状态

A11 :      ... <    0 DM

A12 : 0 <= ... <  200 DM

A13 :      ... >= 200 DM /salary assignments for at least 1 year至少 1 年的工资分配

A14 : no checking account无账户

Credit history

信用记录

A30 : no credits taken/all credits paid back duly

A31 : all credits at this bank paid back duly

A32 : existing credits paid back duly till now

A33 : delay in paying off in the past

A34 : critical account/other credits existing (not at this bank)

Purpose

目的

A40 : car (new)

A41 : car (used)

A42 : furniture/equipment

A43 : radio/television

A44 : domestic appliances

A45 : repairs

A46 : education

A47 : (vacation - does not exist?)

A48 : retraining

A49 : business

A410 : others

Savings account/bonds

储蓄账户/债券

A61 :          ... <  100 DM

A62 :   100 <= ... <  500 DM

A63 :   500 <= ... < 1000 DM

A64 :          .. >= 1000 DM

A65 :   unknown/ no savings account

Present employment since

至今工作至今

A71 : unemployed

A72 :       ... < 1 year

A73 : 1  <= ... < 4 years  

A74 : 4  <= ... < 7 years

A75 :       .. >= 7 years

Personal status and sex

个人地位和性别

A91 : male   : divorced/separated

A92 : female : divorced/separated/married

A93 : male   : single

A94 : male   : married/widowed

A95 : female : single

Other debtors / guarantors

其他债务人/担保人

A101 : none

A102 : co-applicant

A103 : guarantor

Property

财产

A121 : real estate

A122 : if not A121 : building society savings agreement/life insurance

A123 : if not A121/A122 : car or other, not in attribute 6

A124 : unknown / no property

Other installment plans

其他分期付款计划

A141 : bank

A142 : stores

A143 : none

Housing

住房

A151 : rent

A152 : own

A153 : for free

Job

工作

A171 : unemployed/ unskilled  - non-resident

A172 : unskilled - resident

A173 : skilled employee / official

A174 : management/ self-employed/highly qualified employee/ officer

Telephone

电话

A191 : none

A192 : yes, registered under the customers name

foreign worker

外籍工人

A201 : yes

A202 : no

   

GermanCreditData数据集的下载

数据集链接UCI Machine Learning Repository

GermanCreditData数据集的使用方法

相关案例
ML之LoR:基于信用卡数据集利用LoR逻辑回归算法实现如何开发通用信用风险评分卡模型之全流程讲解_一个处女座的程序猿的博客-CSDN博客
https://blog.csdn.net/qq_41185868/article/details/125418213

背景描述 本项目采用了UCI数据仓库,这是一个自1970年代中期以来广泛使用的公认资源。它在学术界享有盛誉,因其数据集涵盖了从生物信息学到社会科学等多个领域的真实世界问题,确保了研究成果的实用性和相关性。我们可以通过 Python 中的 ucimlrepo 库直接访问这些数据集,这样显著提高了数据获取的效率,简化了预处理流程,从而让我们能够迅速投入到实证分析中去。 而且还有还很重要的一点:该数据集的普及性和熟悉度为我们的研究提供了一个共同的基准,使得方法论的通用性和比较性得到加强。同时,数据的真实性和可复刻性也为项目带来了额外的价值。我们的分析不仅可以由同行学者验证,而且还可以促进知识的积累,为未来的科学探索提供基石。这种方法论和数据来源的选择可以确保你的项目或者算法能够在数据科学界得到广泛的认可和应用。 数据说明 这份数据是 uci 数据仓库中的 Default of credit card clients 数据集。读取方法可以参考我的相关项目。 该数据集包含 30,000 名客户及其在台湾一家银行的信用卡交易数据。除了客户的静态特征外,该数据集还包含某年4月至9月的信用卡账单支付历史,以及客户信用卡的余额限制。目标是客户是否会在接下来的一个月,即该年10月拖欠信用卡付款。 ID:信用卡客户ID号 LIMIT_BAL:以新台币计算的信贷金额(包括个人和家庭/补充信贷)/ 信用卡限额 SEX: 性别 (1代表男性,2代表女性) EDUCATION:受 教育程度(1=研究生, 2=大学, 3=高中, 4=其他 5=未知, 6=未知) MARRIAGE:婚姻状况(1=已婚,2=单身,3=其他) AGE:年龄 X1:信用额度,包括其个人和家庭补充信用 X2:性别(1=male;2=female) X3:教育(1=研究生,2=大学,3=高中,4=其他) X4:婚姻状况(1=已婚,2=单身,3=其他) X5:年龄,age X6-X11:过去六个月的还款情况。X6-X11为9-4月的还款情况。其中,-1,代表按时还款;1,代表延时一个月还款;2,代表延时两个月还款.......依次类推,XN=n,代表延时n个月还款, X12-X17:过去六个月的账单数额情况。X12-X17为9-4月账单数额情况 X18-X23:过去六个月的还款数额情况。 X18-X23为9-4月还款数额情况 Y:目标属性,客户下个月还款违约情况(1=逾期,0=未逾期) 通常会用于分类模型,应用场景十分广泛。尤其适用于金融机构在风险评估和信贷审批过程中,以判断客户是否有资格获得其他贷款产品,例如汽车贷款。通过包含的23个输入变量,如信用额度、性别、教育程度等,以及目标变量,即客户的还款违约情况,研究者能够对信用风险进行准确评估。这些细致的数据为研究者提供了理解和预测客户行为的全面视角。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值