AI之Paper:Papers With Code/Browse State-of-the-Art免费资源网站(人工智能领域SOTA算法原始论文+代码+数据集)的简介、使用方法之详细攻略
目录
Papers With Code/Browse State-of-the-Art网站的简介
Papers With Code/Browse State-of-the-Art网站的使用方法
Papers With Code/Browse State-of-the-Art网站的简介
Papers With Code 是一个免费的机器学习资源网站,由Meta AI 团队开发和维护。主要是浏览和查询机器学习领域不同任务的"目前最先进水平",寻找某个任务下表现最好的论文实现。用户可以通过它快速了解该任务当前的研究进展和最优水平。
该网站目前已经概括了计算机视觉、自然语言处理、医学、杂项领域、方法学、时间序列、图形、语音、音频、推理、计算机代码、游戏、对抗性、机器人、知识库和音乐等多个领域的任务和相关论文数量。总体来说,涵盖了广泛的机器学习和人工智能研究主题,共涉及数千个任务和上万篇相关论文。
主要内容包括:
>> 收录与机器学习相关的最新论文,并提供这些论文的代码实现链接,方便访问和验证论文内容。
>> 将这些论文在不同任务与数据集上的性能进行排名,形成一个机器学习领域不同任务的"目前最先进水平(state-of-the-art)"。
>> 收录的论文按照任务分类,包括计算机视觉、自然语言处理、医疗、杂项等多个领域。每个任务下再细分子任务。
>> 提供每个任务的"目前最先进水平"排名,显示这个任务下代码实现性能最高的几篇论文,以及它们在这个任务不同评测数据集上的得分。
>> 除论文外,也收录相关的数据集、库、算法和趋势等机器学习资源。
官网地址:Browse the State-of-the-Art in Machine Learning | Papers With Code
1、使命
论文与代码的使命是创建一个免费开放的资源,包括机器学习论文、代码、数据集、方法和评估表。我们相信,在NLP和ML的支持下,最好与社区一起完成这项工作。本网站的所有内容都是在CC-BY-SA(与维基百科相同)下公开许可的,每个人都可以贡献——寻找“编辑”按钮!我们还为天文学、物理学、计算机科学、数学和统计学领域的论文提供专门的门户网站。