LLM之Ollama:ollama的简介、安装和使用方法、案例应用之详细攻略

本文详细介绍了OLLAMA,一款支持本地运行大型语言模型的工具,涉及模型库、安装步骤、快速入门、自定义模型(包括从GGUF和PyTorch导入)、CLI和RESTAPI使用,以及多种案例应用如Llama3部署和RAG功能实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLM之Ollama:ollama的简介、安装和使用方法、案例应用之详细攻略

目录

ollama的简介

1、模型库

ollama的安装和使用方法

1、下载

macOS、Windows、Linux

Docker

相关库

2、快速入门

3、自定义模型

从 GGUF 导入

从 PyTorch 或 Safetensors 导入

自定义提示

可以使用提示来定制 Ollama 库中的模型。例如,要定制 llama2 模型:

创建一个 Modelfile:

接下来,创建并运行模型:

4、CLI 参考

5、构建

安装 cmake 和 go

运行本地构建

6、REST API

生成响应

与模型聊天

ollama的案例应用—Ollama的两种实现模式:聊天模式、服务器模式

T1、在Dos内直接实现Ollama的CLI聊天模式

LLMs之DeepSeek:仅需四个步骤的最简练实现DeepSeek-R1推理—基于Ollama框架实现本地部署并启用DeepSeek-R1模型服务图文教程

T2、基于Ollama后端框架结合WebUI界面+采用Docker部署服务实现Ollama的GUI聊天模式

LLMs之Llama3:手把手教你(只需四步)基于ollama框架(安装并配置)及其WebUI界面对LLaMA-3-8B模型进行Docker部署(打包依赖项+简化部署过程+提高可移植性)并测试对话和图像生成功能

T3、基于Ollama后端框架并开启服务器模式+并结合AnythingLLM实现本地知识库问答

LLMs之RAG:基于Ollama框架(开启服务器模式+加载LLMs)部署LLaMA3/Phi-3等大语言模型、并结合AnythingLLM框架(配置参数LLM Preference【LLM Provider-Chat Model】 /Embedding Preference/Vector Database)实现RAG功能(包括本地文档和抓取网页)实现Chat聊天以及本地知识库问答实战

T4、基于Ollama后端框架结合Dify前端框架实现RAG

LLMs之RAG:基于Ollama后端框架(配置phi3/LLaMA-3模型)结合Dify前端框架(设置知识库文件+向量化存储+应用发布)创建包括实现本地知识库问答/翻译助手等多个应用


ollama的简介

ollama是一款可以开始使用本地的大型语言模型。启动并运行大型语言模型。运行Llama 2、Code Llama和其他模型。自定义并创建您自己的模型。

官网:Ollama

GitHub地址:GitHub - ollama/ollama: Get up and running with Llama 2, Mistral, Gemma, and other large language models.

1、模型库

Ollama 支持 ollama.com/library 上可用的一系列模型。

注意:运行 7B 模型时,您应至少有 8GB 的可用 RAM,运行 13B 模型时需要 16GB,运行 33B 模型时需要 32GB。

以下是一些可下载的示例模型:

ModelParametersSizeDownload
Llama 27B3.8GBollama run llama2
Mistral7B4.1GBollama run mistral
Dolphin Phi2.7B1.6GBollama run dolphin-phi
Phi-22.7B1.7GBollama run phi
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
Llama 2 13B13B7.3GBollama run llama2:13b
Llama 2 70B70B39GBollama run llama2:70b
Orca Mini3B1.9GBollama run orca-mini
Vicuna7B3.8GBollama run vicuna
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b

ollama的安装和使用方法

实战安装案例https://yunyaniu.blog.csdn.net/article/details/138235781

1、下载

macOS、Windows、Linux

macOS:https://ollama.com/download/Ollama-darwin.zip

Windows:https://ollama.com/download/OllamaSetup.exe

Linux:

curl -fsSL https://ollama.com/install.sh | sh

手动安装说明:ollama/docs/linux.md at main · ollama/ollama · GitHub

Docker

Ollama 官方 Docker 镜像 ollama/ollama 已在 Docker Hub 上可用。

https://hub.docker.com/r/ollama/ollama

相关库

ollama-python
ollama-js

2、快速入门

要运行并与 Llama 2 聊天:

ollama run llama2

3、自定义模型

​​​​​​​从 GGUF 导入

# 从 GGUF 导入:Ollama 支持在 Modelfile 中导入 GGUF 模型:
创建一个名为 Modelfile 的文件,其中包含一个 FROM 指令,指向要导入的模型的本地文件路径。FROM ./vicuna-33b.Q4_0.gguf


# 在 Ollama 中创建模型
ollama create example -f Modelfile

# 运行模型
ollama run example

从 PyTorch 或 Safetensors 导入

有关导入模型的指南,请参阅指南。

ollama/docs/import.md at main · ollama/ollama · GitHub

自定义提示

可以使用提示来定制 Ollama 库中的模型。例如,要定制 llama2 模型:
ollama pull llama2

创建一个 Modelfile:
FROM llama2


PARAMETER temperature 1  将温度设置为 1 [较高为更具创造性,较低为更连贯]
# set the system message设置系统消息
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
""
FROM llama2

接下来,创建并运行模型:
ollama create mario -f ./Modelfile
​​​​​​​ollama run mario

>>> hi
Hello! It's your friend Mario.

有关更多示例,请参阅示例目录。有关使用 Modelfile 的更多信息,请参阅 Modelfile 文档。

4、CLI 参考

# 创建模型:使用 Modelfile 创建模型的命令是 ollama create。
ollama create mymodel -f ./Modelfile

# 拉取模型:此命令还可用于更新本地模型。只会拉取差异。
ollama pull llama2           

# 删除模型
ollama rm llama2

# 复制模型
ollama cp llama2 my-llama2

多行输入:对于多行输入,可以使用"""
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

# 多模态模型
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

# 将prompt作为参数传递
$ ollama run llama2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

# 列出计算机上的型号
ollama list

# 开始Ollama:在不运行桌面应用程序的情况下启动Ollama时使用Ollama服务。
ollama serve

5、构建

安装 cmake 和 go

# 安装 cmake 和 go:
brew install cmake go

# 然后生成依赖项:
go generate ./...

# 然后构建二进制文件:
go build .

有关更详细的说明,请参阅开发人员指南

运行本地构建

# 接下来,启动服务器:
./ollama serve

# 最后,在另一个 shell 中,运行一个模型:
./ollama run llama2

6、REST API

Ollama 具有用于运行和管理模型的 REST API。

生成响应

curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"天空为什么是蓝色?"
}'

与模型聊天

curl http://localhost:11434/api/chat -d '{
"model": "mistral",
"messages": [
{ "role": "user", "content": "天空为什么是蓝色?" }
]
}'

有关所有端点的 API 文档,请参阅 API 文档。

ollama的案例应用—Ollama的两种实现模式:聊天模式、服务器模式

持续更新中……​​​​​​​

T1、在Dos内直接实现Ollama的CLI聊天模式

官网查找下载模型的命令→Dos内执行下载→执行对话聊天

模型地址library

ollama run llama3:8b
ollama run llama3:70b


ollama run phi3
ollama run phi3:3.8b-mini-instruct-4k-fp16

​​​​​​​

LLMs之DeepSeek:仅需四个步骤的最简练实现DeepSeek-R1推理—基于Ollama框架实现本地部署并启用DeepSeek-R1模型服务图文教程

LLMs之DeepSeek:仅需四个步骤的最简练实现DeepSeek-R1推理—基于Ollama框架实现本地部署并启用DeepSeek-R1模型服务图文教程-CSDN博客

T2、基于Ollama后端框架结合WebUI界面+采用Docker部署服务实现Ollama的GUI聊天模式

LLMs之Llama3:手把手教你(只需四步)基于ollama框架(安装并配置)及其WebUI界面对LLaMA-3-8B模型进行Docker部署(打包依赖项+简化部署过程+提高可移植性)并测试对话和图像生成功能

https://yunyaniu.blog.csdn.net/article/details/138235781

T3、基于Ollama后端框架并开启服务器模式+并结合AnythingLLM实现本地知识库问答

LLMs之RAG:基于Ollama框架(开启服务器模式+加载LLMs)部署LLaMA3/Phi-3等大语言模型、并结合AnythingLLM框架(配置参数LLM Preference【LLM Provider-Chat Model】 /Embedding Preference/Vector Database)实现RAG功能(包括本地文档和抓取网页)实现Chat聊天以及本地知识库问答实战

https://yunyaniu.blog.csdn.net/article/details/138514062

T4、基于Ollama后端框架结合Dify前端框架实现RAG

LLMs之RAG:基于Ollama后端框架(配置phi3/LLaMA-3模型)结合Dify前端框架(设置知识库文件+向量化存储+应用发布)创建包括实现本地知识库问答/翻译助手等多个应用

https://yunyaniu.blog.csdn.net/article/details/138514081


 

LLM是一家知名企业,为各行各业提供全方位的企业应用解决方案。下面将通过一个实际案例来说明LLM在企业应用方面的成功经验。 某电子制造企业合作了LLM,希望提高生产效率产品质量。LLM的团队首先进行了全面的企业调研,了解其业务流程存在的问题。随后,他们根据调研结果设计了一套定制化的企业应用系统。 该企业应用系统包含了以下几个核心模块:生产计划管理、设备维护管理、原材料采购与库存管理、质量检测与追溯、销售订单管理以及绩效评估。每个模块都有相应的功能流程,能够满足企业的具体需求。 通过该企业应用系统,该电子制造企业实现了很多突破。首先,生产计划管理模块能够根据订单情况自动生成生产计划,有效降低了生产周期提高了生产效率。设备维护管理模块则帮助企业实现了设备的智能化管理,及时进行维护保养,减少了停机时间维修成本。 原材料采购与库存管理模块通过与供应商进行信息对接,实现了快速采购准确控制库存,避免了原材料不足过多的情况。质量检测与追溯模块在生产过程中进行多次质量检测,确保产品质量达标,并实现了产品追溯,便于问题溯源召回。销售订单管理模块则提供了一个便捷的订单管理系统,实现了订单的及时处理跟踪。绩效评估模块通过对各个部门员工的工作数据进行分析,帮助企业进行绩效评估个人提升。 通过LLM的企业应用系统,该电子制造企业的生产效率得到了大幅提升,产品质量得到了有效控制。同时,该系统增加了企业的信息化管理,提高了企业的竞争力市场份额。 这个案例充分展示了LLM在企业应用方面的成功经验,通过对企业的深入了解全面的系统设计,能够为企业提供量身定制的解决方案,帮助其实现高效运营持续发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值