LLMs之WebUI:Open WebUI的简介、安装和使用方法、案例应用之详细攻略
目录
T3、Docker Compose、Kustomize和Helm安装
Open WebUI的简介
Open WebUI是一个可扩展、功能丰富且用户友好的自托管Web UI,旨在完全离线运行。它支持各种LLM运行器,包括Ollama和兼容OpenAI的API。更多信息请查看Open WebUI文档。
Open WebUI是一个功能强大的、易于使用的自托管LLM界面,提供了丰富的功能和灵活的扩展性,适用于各种LLM应用场景。
GitHub地址:GitHub - open-webui/open-webui: User-friendly AI Interface (Supports Ollama, OpenAI API, ...)
官网:Open WebUI
1、特点
>> 轻松设置:使用Docker或Kubernetes(kubectl、kustomize或helm)进行无缝安装,支持:ollama和:cuda标记的镜像。
>> Ollama/OpenAI API集成:轻松集成兼容OpenAI的API,实现与Ollama模型的灵活对话。可以自定义OpenAI API URL以连接LMStudio、GroqCloud、Mistral、OpenRouter等。
>> 管道和Open WebUI插件支持:使用管道插件框架将自定义逻辑和Python库无缝集成到Open WebUI中。启动管道实例,将OpenAI URL设置为管道URL,探索无限可能。示例包括函数调用、用户速率限制、使用Langfuse进行使用情况监控、使用LibreTranslate进行实时翻译、有害信息过滤等等。
>> 响应式设计:在台式机、笔记本电脑和移动设备上都能获得无缝体验。
>> 移动端渐进式Web应用(PWA):在移动设备上提供类似原生应用的体验,在本地主机上提供离线访问和无缝用户界面。
>> 完全支持Markdown和LaTeX:使用全面的Markdown和LaTeX功能来增强LLM体验。
>> 免提语音/视频通话:集成免提语音和视频通话功能,实现更动态和交互式的聊天环境。
>> 模型构建器:通过Web UI轻松创建Ollama模型。创建和添加自定义角色/代理,自定义聊天元素,并通过Open WebUI社区集成轻松导入模型。
>> 原生Python函数调用工具:在工具工作区中内置代码编辑器支持,增强LLM功能。通过简单地添加纯Python函数来实现“自带函数”(BYOF),从而与LLM无缝集成。
>> 本地RAG集成:支持检索增强生成(RAG),将文档交互无缝集成到聊天体验中。可以直接将文档加载到聊天中,或将文件添加到文档库,使用#命令轻松访问它们。
>> 用于RAG的网络搜索:使用SearXNG、Google PSE、Brave Search、serpstack、serper、Serply、DuckDuckGo、TavilySearch和SearchApi等提供商进行网络搜索,并将结果直接注入聊天体验。
>> 网页浏览功能:使用#命令后跟URL将网站无缝集成到聊天体验中。
>> 图像生成集成:使用AUTOMATIC1111 API或ComfyUI(本地)以及OpenAI的DALL-E(外部)等选项无缝集成图像生成功能。
>> 多模型对话:同时轻松与各种模型互动,利用其独特的优势获得最佳响应。
>> 基于角色的访问控制(RBAC):通过受限权限确保安全访问;只有授权人员才能访问您的Ollama,并且只有管理员才能创建/提取独占模型。
>> 多语言支持:支持国际化(i18n),可以使用自己喜欢的语言体验Open WebUI。
>> 持续更新:定期更新、修复和新功能。
Open WebUI的安装和使用方法
1、安装
Open WebUI提供了多种安装方法:
T1、Python pip安装
需要Python 3.11。
安装命令:
pip install open-webui;
运行命令:
open-webui serve (访问地址:http://localhost:8080)
T2、Docker安装
推荐使用带有:cuda或:ollama标签的官方镜像。 需要根据Ollama是否在本地以及是否需要GPU支持选择不同的命令。 关键是需要挂载数据卷-v open-webui:/app/backend/data以防止数据丢失。 具体命令请参考GitHub页面中的详细说明。 如果Ollama在不同的服务器上,需要设置OLLAMA_BASE_URL环境变量。
T3、Docker Compose、Kustomize和Helm安装
更多安装方法请参考Open WebUI文档。
2、使用方法
Open WebUI支持多种LLM和API,并通过其插件框架和功能,可以实现各种应用场景,例如:
>> 与Ollama模型进行对话:直接使用Ollama模型进行交互式对话。
>> 使用OpenAI API:连接并使用OpenAI API进行文本生成、翻译等任务。
>> 构建自定义管道:通过Python脚本扩展Open WebUI的功能,例如实现函数调用、用户速率限制、使用情况监控、实时翻译、有害信息过滤等。
>> 本地RAG:将本地文档集成到对话中,实现基于文档的知识问答。
>> 网络搜索集成:将网络搜索结果集成到对话中,获取更全面的信息。
>> 图像生成:集成图像生成模型,生成与对话相关的图像。
>> 多模型协同工作:同时使用多个模型,结合它们的优势来完成复杂的任务。
Open WebUI的案例应用
持续更新中……