AI之DL:人工智能领域—深度学习的简介(包括相关术语概念)、常用算法、常用框架、应用场景之详细攻略

本文详细介绍了深度学习的基础知识,包括与机器学习和人工智能的关系、激活函数、损失函数、优化算法等。此外,还探讨了人工神经网络的发展历程,从感知机到深度学习复兴,以及深度学习与人类大脑的联系。文中还概述了常见的深度学习模型(DNN、CNN、RNN)和框架,并讨论了其在不同领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI之DL:人工智能领域—深度学习的简介(包括相关术语概念)、常用算法、常用框架、应用场景之详细攻略

目录

相关文章

AI:人工智能(Artificial Intelligence)的简介、发展历史、应用场景之详细攻略

AI之DS:人工智能领域—数据科学技术(DataScience,提取+分析+可视化+机器学习)的简介、流程、案例应用执行详细攻略

AI之ML:人工智能领域—机器学习的简介、常用算法、常用框架、应用场景之详细攻略

AI之DL:人工智能领域—深度学习的简介(包括相关术语概念)、常用算法、常用框架、应用场景之详细攻略

深度学习(神经网络)的相关术语

0、深度学习与机器学习、人工智能之间的关系

1、基础知识(相关概念、训练策略)

DL之AF:机器学习/深度学习中常用的激活函数(sigmoid、softmax等)简介、应用、计算图实现、代码实现详细攻略

ML之ME/LF:机器学习中常见模型评估指标/损失函数(LiR损失、L1损失、L2损失、Logistic损失)求梯度/求导、案例应用之详细攻略

DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略

2、深度学习硬件相关的术语

深度学习的简介

1、深度学习的概述

2、思考与探究:ANN(人工神经网络)与人类大脑

(1)、人工神经网络模拟动物神经网络、人类大脑

(2)、人工智能面临一个关键问题:是否需要先理解大脑的工作原理才能创造出与之相媲美的人工智能?

(3)、一篇论文分析了深层神经网络与视觉神经之间的对应关系

(4)、目前对深度神经网络和脑科学的研究还不完善

3、ANN(人工神经网络)的发展过程:感知机→BP→低谷→复兴→持续创新

AI之DL:人工智能领域—深度学习的发展历史(偏参考权威)、重要性节点、代表性算法之详细攻略

(1)、启蒙时期——感知机时代(1950s-1960s):诞生即首次遇冷

DL之Perceptron:Perceptron感知器(多层感知机/多层神经网络/人工神经元)的简介、原理代码实现、案例应用(相关配图)之详细攻略

(2)、复苏时期——反向传播算法的提出(1970s-1980s):让神经网络研究得以复苏

DL之BP: BP神经网络的简介、基础知识(神经元/感知机、训练策略、预测原理)、经典案例应用之详细攻略

(3)、低谷时期——深度学习的低谷(1990s-2000s):SVM性能炸天,让神经网络算法望其项背

(4)、复兴时期——深度学习的复兴(2010s至今):CV领域算法助力神经网络算法起飞!

AI之DL:人工智能领域—深度学习的发展历程之深度学习爆发的三大因素、探究DL为什么耗算力

(5)、高潮时期——持续创新和应用(2020s至今):NLP领域算法助力神经网络算法迈向AGI时代!

4、各种对比

对比:NN(早期的浅层学习)、DNN(后期的深度学习)

对比:HNN、DNN

5、深度学习大牛圈及其关系

Hinton、Jordan、LeCun、Bengio等

6、深度学习的日常工作

深度学习的常用算法

0、常用的神经网络模型概览

1、DNN

DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介、应用、经典案例之详细攻略

2、CNN

DL之CNN:计算机视觉之卷积神经网络算法的简介(经典架构/论文)、CNN优化技术、调参学习实践、CNN经典结构及其演化、案例应用之详细攻略

3、RNN

DL之RNN/LSTM/GRU:RNN/LSTM/GRU算法动图对比、TF代码定义之详细攻略

4、Transformer

深度学习的常用框架

深度学习的应用场景


相关文章

AI:人工智能(Artificial Intelligence)的简介、发展历史、应用场景之详细攻略

AI:人工智能的简介、发展历史、案例应用之详细攻略_人工智能领域之ai基础概念术语-CSDN博客<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值