AI之DL:人工智能领域—深度学习的简介(包括相关术语概念)、常用算法、常用框架、应用场景之详细攻略
目录
AI:人工智能(Artificial Intelligence)的简介、发展历史、应用场景之详细攻略
AI之DS:人工智能领域—数据科学技术(DataScience,提取+分析+可视化+机器学习)的简介、流程、案例应用执行详细攻略
AI之ML:人工智能领域—机器学习的简介、常用算法、常用框架、应用场景之详细攻略
AI之DL:人工智能领域—深度学习的简介(包括相关术语概念)、常用算法、常用框架、应用场景之详细攻略
DL之AF:机器学习/深度学习中常用的激活函数(sigmoid、softmax等)简介、应用、计算图实现、代码实现详细攻略
ML之ME/LF:机器学习中常见模型评估指标/损失函数(LiR损失、L1损失、L2损失、Logistic损失)求梯度/求导、案例应用之详细攻略
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
(2)、人工智能面临一个关键问题:是否需要先理解大脑的工作原理才能创造出与之相媲美的人工智能?
3、ANN(人工神经网络)的发展过程:感知机→BP→低谷→复兴→持续创新
AI之DL:人工智能领域—深度学习的发展历史(偏参考权威)、重要性节点、代表性算法之详细攻略
(1)、启蒙时期——感知机时代(1950s-1960s):诞生即首次遇冷
DL之Perceptron:Perceptron感知器(多层感知机/多层神经网络/人工神经元)的简介、原理代码实现、案例应用(相关配图)之详细攻略
(2)、复苏时期——反向传播算法的提出(1970s-1980s):让神经网络研究得以复苏
DL之BP: BP神经网络的简介、基础知识(神经元/感知机、训练策略、预测原理)、经典案例应用之详细攻略
(3)、低谷时期——深度学习的低谷(1990s-2000s):SVM性能炸天,让神经网络算法望其项背
(4)、复兴时期——深度学习的复兴(2010s至今):CV领域算法助力神经网络算法起飞!
AI之DL:人工智能领域—深度学习的发展历程之深度学习爆发的三大因素、探究DL为什么耗算力
(5)、高潮时期——持续创新和应用(2020s至今):NLP领域算法助力神经网络算法迈向AGI时代!
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介、应用、经典案例之详细攻略
DL之CNN:计算机视觉之卷积神经网络算法的简介(经典架构/论文)、CNN优化技术、调参学习实践、CNN经典结构及其演化、案例应用之详细攻略
DL之RNN/LSTM/GRU:RNN/LSTM/GRU算法动图对比、TF代码定义之详细攻略