一个处女座的程序猿

哈哈,一起学习啦。本博主做事,从来都是走心不走肾,你懂得……

CV:基于Keras利用cv2+自定义(加载人脸识别xml文件)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label——Jason Niu

CV:利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label——Jason Niu

#CV:基于Keras利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label——Jason Niu
import sys

import cv2
from keras.models import load_model
import numpy as np

#python image_emotion_gender_demo.py F:/File_Python/Resources/heying02.jpg

# parameters for loading data and images
#1、定义加载参数:要识别图像、人脸轮廓识别xml库、两个模型(表情模型hdf5、性别模型hdf5)、两类label(表情、性别)、设定字体格式,单位移动像素,
#image_path = sys.argv[1]  #sys.argv[0]表示执行自己, 有此参数,说明该文件要从命令里面调用python image_emotion_gender_demo.py F:/File_Python/Resources/heying04.jpg
image_path ="F:/File_Python/Resources/hezhao05.jpg"
detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
emotion_labels = get_labels('fer2013')  #get_labels自定义函数,传入fer2013获取七种表情label、传入imdb获取两种性别label
gender_labels = get_labels('imdb')      #get_labels自定义函数,传入imdb获取两种性别label
font = cv2.FONT_HERSHEY_SIMPLEX   #定义一种字体格式

# hyper-parameters for bounding boxes 
#设置单位移动像素
gender_offsets = (30, 60) #最初有该代码
gender_offsets = (10, 10)  #(水平移动单位像素20, 垂直移动单位像素40)
emotion_offsets = (20, 40)
emotion_offsets = (0, 0) #最初有该代码

# loading models 
#2、加载模型一个xml、两个hdf5,然后获取输入两个模型形状进行推理(输入hadf5库内张量集合中的下标1~3),最后两种方式加载图像
face_detection = load_detection_model(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
gender_classifier = load_model(gender_model_path, compile=False)

# getting input model shapes for inference 
#获取输入模型形状进行推理(输入hadf5库内张量集合中的下标1~3)
emotion_target_size = emotion_classifier.input_shape[1:3] #输入hadf5库内张量集合中的下标1~3
gender_target_size = gender_classifier.input_shape[1:3]

# loading images:
#两种模式加载图像:RGB模式加载图像、gray模式加载图像
rgb_image = load_image(image_path, grayscale=False)  #自定义load_image函数,调用image.load_img函数不以灰度模式加载图像
gray_image = load_image(image_path, grayscale=True)  #调用image.load_img函数以灰度模式加载图像
gray_image = np.squeeze(gray_image)  #从数组的形状中删除单维条目
gray_image = gray_image.astype('uint8')  #格式转换为8位无符号整形

#定义人脸:调用detectMultiScale函数进行识别人脸得到列表
faces = detect_faces(face_detection, gray_image) #detect_faces函数:调用detectMultiScale函数进行识别人脸(检测出图片中所有的人脸),并将人脸用vector保存各个人脸的坐标、大小(用矩形表示),函数由分类器对象调用

#3、for循环对人脸表情、性别进行实时贴标签
for face_coordinates in faces: 
    #首先分别获取性别、表情四个参数(坐标、尺寸参数)
    x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
    rgb_face = rgb_image[y1:y2, x1:x2]     #性别的[坐标参数,尺寸参数]

    x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
    gray_face = gray_image[y1:y2, x1:x2]   #表情的[坐标参数,尺寸参数]

    try:
        rgb_face = cv2.resize(rgb_face, (gender_target_size))#cv2.resize(image, image2,dsize) 图像缩放方法;即(输入原始图像,输出新图像,图像的大小)
        gray_face = cv2.resize(gray_face, (emotion_target_size))
    except:
        continue
    #依次对性别的rgb_face、表情的gray_face,求解最大匹配概率及其对应标签
    rgb_face = preprocess_input(rgb_face, False)#preprocess_input函数先将gray_face转换为'float32'然后 /255.0
    rgb_face = np.expand_dims(rgb_face, 0)    #在标签数据上增加一个维度,0是增加在第一个轴上
    gender_prediction = gender_classifier.predict(rgb_face)  #利用.predict函数模型对cv2识别出的人脸进行比对存入数组中
    gender_label_arg = np.argmax(gender_prediction)  #找到数组中最大值的下标
    gender_text = gender_labels[gender_label_arg]    #通过最大值的下标,找到其对应的label名称

    gray_face = preprocess_input(gray_face, True)
    gray_face = np.expand_dims(gray_face, 0)
    gray_face = np.expand_dims(gray_face, -1)
    emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
    emotion_text = emotion_labels[emotion_label_arg]

    if gender_text == gender_labels[0]: #if条件判断性别label,相等即女性则为黄色,否则男性红色
        color = (255, 255, 0)
    else:
        color = (255, 0, 0)

    draw_bounding_box(face_coordinates, rgb_image, color)  #draw_bounding_box函数:在人脸区域画一个正方形出来
    draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
    #draw_text函数中的cv2.putText:显示添加的文字(性别、表情)信息;(照片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细)
    draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)
 
  
#4、对图片颜色空间转换,最后保存标签后的图像
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR) #对图像进行颜色空间转换处理
save_img='F:/File_Python/Resources/hezhao041.jpg'
cv2.imwrite(save_img, bgr_image) #最后保存贴标签后的图像

cv2.imshow('Emotion and Gender test', rgb_image)  

cv2.waitKey(0)
cv2.destroyAllWindows()  


阅读更多

扫码向博主提问

去开通我的Chat快问

qq_41185868

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • ML
  • DL
  • BlockChain
  • CV
  • Programmin
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_41185868/article/details/80316272
个人分类: CV Keras
想对作者说点什么? 我来说一句

基于opencv 的人脸表情识别

2013年06月20日 5.09MB 下载

没有更多推荐了,返回首页

不良信息举报

CV:基于Keras利用cv2+自定义(加载人脸识别xml文件)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label——Jason Niu

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭