DS:《Our Top Data and Analytics Predicts for 2019我们对 2019 年的顶级数据和分析预测》的翻译与解读

该博客对《Our Top Data and Analytics Predicts for 2019》进行翻译与解读,涉及2019年的数据和分析策略、分析和BI解决方案、数字伦理政策治理、数据管理解决方案以及人工智能核心技术等方面内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DS:《Our Top Data and Analytics Predicts for 2019我们对 2019 年的顶级数据和分析预测》的翻译与解读

目录

《Our Top Data and Analytics Predicts for 2019我们对 2019 年的顶级数据和分析预测》的翻译与解读

Predicts 2019: Data and Analytics Strategy数据和分析策略

Predicts 2019: Analytics and BI Solutions分析和 BI 解决方案

Predicts 2019: Digital Ethics, Policy and Governance Are Key to Success With Artificial Intelligence数字伦理、政策和治理是人工智能成功的关键

Predicts 2019: Data Management Solutions数据管理解决方案

Predicts 2019: Artificial Intelligence Core Technologies人工智能核心技术


《Our Top Data and Analytics Predicts for 2019我们对 2019 年的顶级数据和分析预测》的翻译与解读

地址

Our Top Data and Analytics Predicts for 2019 - Andrew White

日期

2019 年 1 月 3 日

Predicts 2019: Data and Analytics Strategy数据和分析策略

By 2022, 90% of corporate strategies will explicitly mention information as a critical enterprise asset and analytics as an essential competency.

By 2023, data literacy will become an explicit and necessary driver of business value, demonstrated by its formal inclusion in over 80% of data and analytics strategies and change management programs.

By 2022, 30% of CDOs will partner with their CFO to formally value the organization’s information assets for improved information management and benefits.

By 2023, 60% of organizations with more than 20 data scientists will require a professional code of conduct incorporating ethical use of data and AI.

By 2022, more than half of major new business systems will incorporate continuous intelligence that uses real-time context data to improve decisions.

到 2022 年,90% 的企业战略将明确提到信息是一项关键的企业资产,而分析是一项基本能力

到 2023 年,数据素养将成为业务价值的明确且必要的驱动力,其正式纳入超过 80% 的数据和分析战略以及变革管理计划就证明了这一点。

到 2022 年,30% 的 CDO 将与其 CFO 合作,正式评估组织的信息资产,以改善信息管理和收益。

到 2023 年,拥有超过 20 名数据科学家的组织中有 60% 将需要包含数据和人工智能的道德使用的专业行为准则。

到 2022 年,超过一半的主要新业务系统将包含使用实时上下文数据改进决策的持续智能。

Predicts 2019: Analytics and BI Solutions分析和 BI 解决方案

Through 2020, 80% of AI projects will remain alchemy, run by wizards whose talents will not scale in the organization.

Through 2022, only 20% of analytic insights will deliver business outcomes.

By 2021, proof-of-concept analytic projects using quantum computing infrastructure will have outperformed traditional analytic approaches in multiple domains by at least a factor of 10

到 2020 年,80% 的 AI 项目仍将是炼金术,由人才无法在组织中扩展的奇才运营。

到 2022 年,只有 20% 的分析洞察力会带来业务成果

到 2021 年,使用量子计算基础设施的概念验证分析项目在多个领域的表现将至少优于传统分析方法 10 倍。

Predicts 2019: Digital Ethics, Policy and Governance Are Key to Success With Artificial Intelligence数字伦理、政策和治理是人工智能成功的关键

By 2021, legislation will require that 100% of conversational assistant applications, which use speech or text, identify themselves as being nonhuman entities.

By 2022, 30% of consumers in mature markets will rely on artificial intelligence (AI) to decide what they eat, what they wear or where they live.

By 2022, 30% of organizations will use explainable AI models to build trust with business stakeholders, up from almost no usage today.

By 2023, a Fortune 1000 antitrust case will hinge on whether tacit cooperation among autonomous AI agents in competitive markets constitutes collusion.

By 2023, over 75% of large organizations will hire AI behavior forensic, privacy and customer trust specialists to reduce brand and reputation risk.

到 2021 年,立法将要求 100% 使用语音或文本的会话助理应用程序将自己标识为非人类实体。

到 2022 年,成熟市场中 30% 的消费者将依靠人工智能 (AI) 来决定他们吃什么、穿什么或住在哪里。

到 2022 年,30% 的组织将使用可解释的 AI 模型来与业务利益相关者建立信任,而目前几乎没有使用。

到 2023 年,财富 1000 强反垄断案将取决于自主人工智能代理在竞争市场中的默契合作是否构成串通。

到 2023 年,超过 75% 的大型组织将聘请 AI 行为取证、隐私和客户信任专家来降低品牌和声誉风险。

Predicts 2019: Data Management Solutions数据管理解决方案

By 2022, 50% of cloud buying decisions will be based on the data assets provided by cloud service providers rather than on the product capabilities.

By 2023, AI-enabled automation in data management will reduce the need for IT specialists by 20%.

By 2023, 75% of all databases will be on a cloud platform, reducing the DBMS vendor landscape and increasing complexity for data governance and integration.

By 2022, organizations utilizing active metadata to dynamically connect, optimize and automate data integration processes will reduce time to data delivery by 30%.

By 2021, enterprises using a cohesive strategy incorporating data hubs, lakes and warehouses will support 30% more use cases than competitors.

到 2022 年,50% 的云购买决策将基于云服务提供商提供的数据资产,而不是产品功能。

到 2023 年,数据管理中支持 AI 的自动化将使对 IT 专家的需求减少 20%。

到 2023 年,75% 的数据库将位于云平台上,这将减少 DBMS 供应商的数量,并增加数据治理和集成的复杂性。

到 2022 年,利用活动元数据动态连接、优化和自动化数据集成流程的组织会将数据交付时间缩短 30%。

到 2021 年,使用包含数据中心、数据湖和数据仓库的凝聚力战略的企业将支持比竞争对手多 30% 的用例。

Predicts 2019: Artificial Intelligence Core Technologies人工智能核心技术

Through 2023, computational resources used in AI will increase 5x from 2018, making AI the top category of workloads driving infrastructure decisions.

Through 2022, only 15% of use cases leveraging AI techniques (such as ML and DNNs) and involving edge and IoT environments will be successful.

Through 2022, over 75% of organizations will use DNNs for use cases that could be addressed using classical ML techniques.

By 2023, 70% of AI workloads will use application containers or be built using a serverless programming model necessitating a DevOps culture.

By 2023, 40% of I&O teams will use AI-augmented automation in large enterprises, resulting in higher IT productivity with greater agility and scalability.

到 2023 年,AI 中使用的计算资源将比 2018 年增加 5 倍,使 AI 成为推动基础设施决策的首要工作负载类别。

到 2022 年,只有 15% 的利用人工智能技术(例如 ML 和 DNN)并涉及边缘和物联网环境的用例会成功。

到 2022 年,超过 75% 的组织将使用 DNN 来处理可以使用经典 ML 技术解决的用例。

到 2023 年,70% 的 AI 工作负载将使用应用程序容器或使用需要 DevOps 文化的无服务器编程模型构建。

到 2023 年,40% 的 I&O 团队将在大型企业中使用 AI 增强的自动化,从而提高 IT 生产力以及更高的敏捷性和可扩展性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值