DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、GC对比

DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、GC对比

导读
          神经网络算法封装为层级结构的作用。在神经网络算法中,通过将神经网络的组成元素实现为层,可以高效地计算梯度(反向传播法)。通过比较数值微分和误差反向传播法的结果,可以确认误差反向传播法的实现是否正确(梯度确认)。

 

 

目录

输出结果

设计思路

核心代码

代码实现过程错误记录


 

 

 

输出结果

 

设计思路

 

核心代码

 
 
 
class TwoLayerNet:
 
    def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):
 
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)
 
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])
 
        self.lastLayer = SoftmaxWithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        
        return x
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
        
    def gradient(self, x, t):
        self.loss(x, t)
 
 
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)
 
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db
 
        return grads



network_batch = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

grad_numerical = network_batch.numerical_gradient_api(x_batch, t_batch)  
grad_backprop = network_batch.gradient(x_batch, t_batch)     

 

 

 

代码实现过程错误记录

出现错误,待解决!!!

Traceback (most recent call last):
  File "F:\File_Python\Python_daydayup\190316.py", line 281, in <module>
    grad = network.gradient(x_batch, t_batch)             
  File "F:\File_Python\Python_daydayup\190316.py", line 222, in gradient
    self.loss(x, t)
  File "F:\File_Python\Python_daydayup\190316.py", line 193, in loss
    return self.lastLayer.forward(y, t) #         ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆   ------部分更改
  File "F:\File_Python\Python_daydayup\190316.py", line 132, in forward
    self.loss = cross_entropy_error(self.y, self.t)
  File "F:\File_Python\Python_daydayup\190316.py", line 39, in cross_entropy_error
    return -np.sum(np.log(y[np.arange(batch_size), t.astype('int64')] + 1e-7)) / batch_size          #t.astype('int64')
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (100,) (100,10) 

 

 

 

相关文章
DL之DNN:自定义2层神经网络TwoLayerNet模型(层级结构更高效)算法对MNIST数据集进行训练、预测

 

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Pima数据集是一个二分类问题,共有8个输入特征和1个二元输出标签。在使用DNN对Pima数据集进行训练时,可以根据经验法则和实验结果来选择神经网络数和神经元数量。 一般来说,对于这种中等大小的数据集,可以使用2~3神经网络结构,其中每的神经元数量可以在50~200之间进行选择。具体的选择可以根据实验结果来进行调整,以达到最优的性能。 以下是一个简单的代码示例,使用Keras来实现DNN对Pima数据集进行训练: ```python import numpy as np from keras.models import Sequential from keras.layers import Dense from sklearn.datasets import load_digits from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split # 加载数据集 digits = load_digits() X = digits.data y = LabelBinarizer().fit_transform(digits.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建模型 model = Sequential() model.add(Dense(100, input_dim=64, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test)) ``` 在上面的代码中,我们使用了两个隐藏,分别包含100和50个神经元。可以通过调整这两个隐藏的神经元数量来进行实验,以找到最优的超参数组合。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值