自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

头部AI社区如有邀博主AI主题演讲请私信—心比天高,仗剑走天涯,保持热爱,奔赴向梦想!低调,专注,谦虚,自律,反思,成长,还算比较正能量的博主,公益免费传播…内心特别想在AI界做出一些可以推进历史进程影响力的技术(兴趣使然,有点小情怀,也有点使命感呀

本博客主要追踪最前沿AI技术及其代码实践案例、个人实战经验总结,并分享DS、ML、BC等最新技术应用(数据科学/自然语言处理-大语言模型/计算机视觉-多模态等),紧跟前沿SAIL(斯坦福)、CSAIL(MIT)、MSRA、OpenAI、Meta、DeepM

  • 博客(3759)
  • 资源 (60)
  • 收藏
  • 关注

原创 成功解决move import (move_argmax, move_argmin, move_max, move_mean, move_median,AttributeError: _ARRAY_A

​成功解决move import (move_argmax, move_argmin, move_max, move_mean, move_median,AttributeError: _ARRAY_API not found目录解决问题解决思路解决方法解决问题A module that was compiled using NumPy 1.x cannot be run inNumPy 2.0.2 as it may crash. To support both 1.x and

2024-12-13 23:59:55 1085

原创 成功解决ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C he

​成功解决ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject目录解决问题解决思路解决方法解决问题File "D:\ProgramData\Anaconda3\Lib\site-packages\pandas\__init__.py", line 22, in f

2024-12-13 23:58:17 3328 2

原创 LLMs之Instructor:Instructor(让LLM结构化输出/将LLM原本的生成式能力封装成具有“解析-验证-生成”流程的可控框架)的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Instructor:Instructor的简介、安装和使用方法、案例应用之详细攻略目录Instructor的简介Instructor的安装和使用方法Instructor的案例应用Instructor的简介Instructor是一个流行的Python库,用于处理大型语言模型(LLM)的结构化输出。它每月拥有超过60万次的下载量,基于Pydantic构建,提供简单、透明且用户友好的API,用于管理验证、重试和流式响应。 Instructor旨在

2024-12-13 00:39:19 1118

原创 LLMs之Router:《PolyRouter: A Multi-LLM Querying System》翻译与解读

​LLMs之Router:《PolyRouter: A Multi-LLM Querying System》翻译与解读目录相关文章《TensorOpera Router: A Multi-Model Router for Efficient LLM Inference》翻译与解读Abstract1、IntroductionConclusion相关文章LLMs之Router:《PolyRouter: A Multi-LLM Quer

2024-12-13 00:37:58 1217

原创 LLMs:基于互联网应用系统的架构的视角—分别从两大部署组(后端服务和Nginx服务【反向代理+负载均衡】)来深度探讨大模型高效部署与应用的核心逻辑、实战案例讲解(对比并分析线电商网站和基于大型语言模

LLMs:基于互联网应用系统的架构的视角—分别从两大部署组(后端服务和Nginx服务【反向代理+负载均衡】)来深度探讨大模型高效部署与应用的核心逻辑、实战案例讲解(对比并分析线电商网站和基于大型语言模型服务案例)之详细攻略目录传统互联网应用系统的架构简介1、后端服务和Nginx服务的简介1.1、后端服务(Backend Service)1.2、Nginx服务:负载均衡+反向代理2、两者关联2.1、配置Nginx作为反向代理2.2、Nginx实现负载均衡案例实战

2024-12-13 00:34:54 1674

原创 LLMs:大模型算法专家&架构师必读—从系统架构和技术栈的角度深度剖析如何搭建一个类似ChatGPT的大模型界面应用—明确需求与目标→分层设计技术架构(数据层/模型层/后端层/前端层)→架构实现(后端

LLMs:大模型算法专家&架构师必读—从系统架构和技术栈的角度深度剖析如何搭建一个类似ChatGPT的大模型界面应用—明确需求与目标(确定应用功能和范围/功能需求/非功能需求)→分层设计技术架构(数据层/模型层/后端层/前端层)→架构实现(后端开发/前端开发/模型部署/数据库与日志系统/系统部署与运维)→项目开发与上线计划→总结与反思(阶段性/持续性)之详细攻略导读:在本文中,博主将带领大家深入探讨如何从系统架构和技术栈的角度,搭建一个类似ChatGPT的大模型界面应用。文章首先明确了应用的需求与目标,

2024-12-12 23:26:51 2934

原创 LLMs之Llama-3:Llama-3.3的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Llama-3:Llama-3.3的简介、安装和使用方法、案例应用之详细攻略目录相关文章Llama-3.3的简介Llama-3.3的安装和使用方法Llama 3.3的案例应用相关文章LLMs之LLaMA:LLaMA的简介、安装和使用方法、案例应用之详细攻略LLMs之LLaMA:LLaMA的简介、安装和使用方法、案例应用之详细攻略_chinese_calendar每年手动更新-CSDN博客LLMs之LLaMA-2:LLaMA 2的

2024-12-12 00:49:17 2665

原创 LLMs之APE:基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略

​LLMs之APE:基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略目录Prompt Improver的简介Prompt Improver的使用方法Prompt Improver的案例应用Prompt Improver的简介Anthropic推出了Prompt Improver,支持通过Claude自动优化提示词,以及在Workbench中直接管理和生成多示例输入/输出对。Prompt Improver通过系统性的提示词优化和示例管

2024-12-11 23:59:43 1736

原创 LLMs之Agent:《AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Compu

​LLMs之Agent:《AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant》翻译与解读目录《AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant》翻

2024-12-10 01:19:06 1586

原创 LLMs之PEFT:《Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey》翻译与解读

​LLMs之PEFT:《Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey》翻译与解读目录《Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey》翻译与解读Abstract1、IntroductionVII Conclusion and Future

2024-12-10 00:29:33 1741

原创 LLMs之ICL:《Bayesian scaling laws for in-context learning》翻译与解读

​LLMs之ICL:《Bayesian scaling laws for in-context learning》翻译与解读目录《Bayesian scaling laws for in-context learning》翻译与解读Abstract1、Introduction7、Conclusion《Bayesian scaling laws for in-context learning》翻译与解读地址论文地址:https://a

2024-12-10 00:01:27 1693

原创 CV之UIGM之OmniGen:《OmniGen: Unified Image Generation》翻译与解读

总而言之,OmniGen 通过构建统一的数据集和简洁的模型架构,实现了图像生成任务的统一,显著简化了工作流程,并展现了强大的多模态理解和生成能力,为通用图像生成基础模型的构建提供了新的方向。我们认为,图像生成的未来范式应该是简单和灵活的,允许通过任何多模态指令直接生成各种图像,而无需复杂的工作流程。此外,与现有的扩散模型相比,它更易于使用,可以通过指令以端到端的方式完成复杂的任务,无需额外的中间步骤,大大简化了图像生成工作流程。每个新任务都需要设计特定的模块和微调模型,这阻碍了图像生成领域的发展。

2024-12-09 23:36:35 1999

原创 MLLM之Pangea:《Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages》翻译与解读

​MLLM之Pangea:《Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages》翻译与解读目录《Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages》翻译与解读Abstract1、IntroductionConclusion《Pangea: A Fully

2024-12-09 23:15:46 1524

原创 LLMs之MultimodalRAG:《Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications》翻

​LLMs之RAG:《Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications》翻译与解读目录《Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications》翻译与解读Abstract1、IntroductionConclusion

2024-12-09 22:32:10 1271

原创 LLMs之RAG:KAG(知识增强生成)的简介、安装和使用方法、案例应用之详细攻略

​LLMs之RAG:KAG的简介、安装和使用方法、案例应用之详细攻略目录KAG的简介KAG的安装和使用方法KAG的案例应用KAG的简介2024年10月25日,KAG (Knowledge Augmented Generation) 是一个基于OpenSPG引擎和大型语言模型(LLM)的逻辑形式引导推理和检索框架。它用于构建专业领域知识库的逻辑推理和事实问答解决方案。KAG能够有效克服传统RAG向量相似度计算模型的不足以及OpenIE引入的GraphRAG的噪声问题。它支

2024-12-09 21:55:42 2753

原创 LLMs之Router:《TensorOpera Router: A Multi-Model Router for Efficient LLM Inference》翻译与解读

​LLMs之Router:《TensorOpera Router: A Multi-Model Router for Efficient LLM Inference》翻译与解读目录《TensorOpera Router: A Multi-Model Router for Efficient LLM Inference》翻译与解读Abstract1、IntroductionConclusion《TensorOpera Router: A Multi

2024-12-09 01:15:14 1196

原创 AI之GPU:GPUStack的简介、安装和使用方法、案例应用之详细攻略

​AI之GPU:GPUStack的简介、安装和使用方法、案例应用之详细攻略目录GPUStack简介GPUStack 安装和使用方法GPUStack的案例应用GPUStack简介2024年8月,GPUStack是一个开源的GPU集群管理器,用于运行AI模型。它具有广泛的硬件兼容性,支持多种品牌的GPU,包括在Apple MacBook、Windows PC和Linux服务器上运行。 它支持各种AI模型,从大型语言模型(LLM)和扩散模型到音频、嵌入和

2024-12-07 23:43:20 10683

原创 LLMs之Agent:《Prompting for action—How AI agents are reshaping the future of work, Expanded capabiliti

​LLMs之Agent:《Prompting for action—How AI agents are reshaping the future of work, Expanded capabilities, use cases and enterprise impact from Generative AI》翻译与解读目录《Prompting for action—How AI agents are reshaping the future of work, Expanded ca

2024-12-05 23:55:59 1403

原创 LLMs之Agent之Lares:Lares的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Agent之Lares:Lares的简介、安装和使用方法、案例应用之详细攻略目录Lares的简介Lares的安装和使用方法Lares的案例应用Lares的简介Lares是一个模拟智能家居系统的项目,核心是一个简单的AI代理。该代理接收用户的指令,并通过OpenAI的函数调用功能与模拟器交互,最终实现用户目标。模拟器包含五个房间,每个房间都有一个可以开关的灯,以及一些可移动的物品(例如狗和人)。 代理可以通过机器人来查看

2024-12-05 23:49:02 1506

原创 LLMs之RAG:《Searching for Best Practices in Retrieval-Augmented Generation》翻译与解读

​LLMs之RAG:《Searching for Best Practices in Retrieval-Augmented Generation》翻译与解读目录《Searching for Best Practices in Retrieval-Augmented Generation》翻译与解读Abstract1、IntroductionConclusion《Searching for Best Practices in Retr

2024-12-05 23:48:15 1222

原创 LLMs:深度剖析训练大语言模型、训练RLHF奖励模型之间的联系和区别—多维度对比(目标/损失函数/数据类型/算法/训练方法/训练过程/评估指标/迭代过程/部署)之详细攻略

LLMs:深度剖析训练大语言模型和训练训练RLHF奖励模型之间的联系和区别—多维度对比(目标/损失函数/数据类型/算法/训练方法/训练过程/评估指标/迭代过程/部署)之详细攻略目录深度剖析训练大语言模型和训练训练RLHF奖励模型之间的联系和区别—多维度对比(目标/损失函数/数据类型/算法/训练方法/训练过程/评估指标/迭代过程/部署)深度剖析训练大语言模型和训练训练RLHF奖励模型之间的联系和区别—多维度对比(目标/损失函数/数据类型/算法/训练方法/训练过程/评估指标/迭代

2024-12-03 21:40:45 1310

原创 成功解决Failed to import transformers.modeling_tf_utils because of the following error (look up to see i

​成功解决Failed to import transformers.modeling_tf_utils because of the following error (look up to see its traceback):Your currently installed version of Keras is Keras 3, but this is not yet supported in Transformers. Please install the backwards-compatible

2024-12-01 20:29:33 4569

原创 成功解决TypeError: __init__() got an unexpected keyword argument ‘sparse‘

​成功解决TypeError: __init__() got an unexpected keyword argument 'sparse'目录解决问题解决思路解决方法解决问题TypeError: __init__() got an unexpected keyword argument 'sparse'解决思路错误信息指出OneHotEncoder的构造函数__init__接收到一个意外的关键字参数sparse。这通常意味着使用的scikit-learn版本不支持spar

2024-11-30 15:06:43 3670 1

原创 LLMs之PE之MCP:模型上下文协议 (MCP)的简介、安装和使用方法、案例应用之详细攻略

​LLMs之PE之MCP:模型上下文协议 (MCP)的简介、安装和使用方法、案例应用之详细攻略目录MCP的简介MCP的安装和使用方法MCP的案例应用MCP的简介2024年11月25日,Anthropic发布了MCP。模型上下文协议 (MCP) 是一种开放协议,用于简化大型语言模型 (LLM) 应用程序与外部数据源和工具之间的集成。它类似于 USB-C 接口,为 AI 应用提供标准化的连接方式,使 LLM 可以连接到不同的数据源和工具。 MCP 由 Anthropic 公司发起并维

2024-11-30 02:25:00 975

原创 LLMs之RAG:基于大语言模型技术的RAG系统项目中常用的评估框架或工具(Ragas/RAGChecker/DeepEval/Prometheus/Phoenix/ChainForge)的简介、使用

​LLMs之RAG:基于大语言模型技术的RAG系统项目中常用的评估框架或工具(Ragas/DeepEval/Prometheus/Phoenix/ChainForge)的简介、使用方法之详细攻略目录基于大语言模型技术的RAG系统项目中常用的评估框架或工具的简介基于大语言模型技术的RAG系统项目中常用的评估框架或工具的使用方法基于大语言模型技术的RAG系统项目中常用的评估框架或工具的简介1、Ragas:评估和优化LLM地址链接:Ragas:GitHub - exploding

2024-11-29 01:43:30 1366

原创 成功解决logs is not a directory [Op:CreateSummaryFileWriter] name

​成功解决logs is not a directory [Op:CreateSummaryFileWriter] name目录解决问题解决思路解决方法解决问题tensorflow.python.framework.errors_impl.FailedPreconditionError: {{function_node __wrapped__CreateSummaryFileWriter_device_/job:localhost/replica:0/task:0/device

2024-11-29 00:45:23 1108

原创 AI之Data之Label Tool:Label Studio(多类型数据标注工具)的简介、安装和使用方法、案例应用之详细攻略

​AI之Data之Label Tool:Label Studio(多类型数据标注工具)的简介、安装和使用方法、案例应用之详细攻略目录Label Studio的简介Label Studio的安装和使用方法:Label Studio的案例应用Label Studio的简介Label Studio 是一个开源的多类型数据标注和注释工具,具有标准化的输出格式。它允许你使用简单直观的界面来标注音频、文本、图像、视频和时间序列等多种类型的数据,并导出到各种模型

2024-11-29 00:45:19 2793

原创 AI之CUDA:解读cudnn_version.h文件—管理 cuDNN 的版本控制及支持设备信息/为后续兼容性检查提供基础

​AI之CUDA:解读cudnn_version.h文件—管理 cuDNN 的版本控制及支持设备信息/为后续兼容性检查提供基础目录解读脚本内容版本定义定义版本号:定义了 cuDNN 主版本号 8、次版本号 8 和补丁级别 1#define CUDNN_MAJOR 8#define CUDNN_MINOR 8#define CUDNN_PATCHLEVEL 1计算版本号:将主版本号、次版本号和补丁级别计算为一个整型值(如 8801 表示版本 8.8.1)#define

2024-11-29 00:41:55 850

原创 成功解决raise ValueError(f“Table ‘{self.name}‘ already exists.“) ValueError: Table ‘titanic_df‘ already

​成功解决raise ValueError(f"Table '{self.name}' already exists.") ValueError: Table 'titanic_df' already exists.目录解决问题解决思路解决方法解决问题报错提示 ValueError: Table 'titanic_df' already exists. 表明在向 SQLite 数据库中写入数据时,表 titanic_df 已经存在。可以在插入数据之前先检查表是否存在,如果存在

2024-11-29 00:39:47 969

原创 成功解决raise ValueError(“No objects to concatenate“)ValueError: No objects to concatenate

​成功解决raise ValueError("No objects to concatenate")ValueError: No objects to concatenate目录解决问题解决思路解决方法解决问题raise ValueError("No objects to concatenate") ValueError: No objects to concatenate解决思路根据报错信息,问题的根本原因是 pd.get_dummies(df_X[non_n

2024-11-29 00:39:43 1922

原创 成功解决raise ImportError(msg) ImportError: Missing optional dependency ‘pytables‘. Use pip or conda to

​成功解决raise ImportError(msg) ImportError: Missing optional dependency 'pytables'. Use pip or conda to install pytables目录解决问题解决思路解决方法解决问题raise ImportError(msg)ImportError: Missing optional dependency 'pytables'. Use pip or conda to install p

2024-11-29 00:37:40 1023

原创 LLMs之ell:ell(轻量级函数式提示工程框架)的简介、安装和使用方法、案例应用之详细攻略

​LLMs之ell:ell(轻量级函数式提示工程框架)的简介、安装和使用方法、案例应用之详细攻略目录ell的简介ell的安装和使用方法ell的案例应用ell的简介2024年8月,ell框架是由前OpenAI研究员William Guss开发的。这个框架的设计理念是将提示词视为程序,而不仅仅是字符串。ELL框架提供了自动化的版本控制和序列化功能,支持多模态数据处理,并配备了丰富的本地开源可视化工具,帮助用户优化提示词工程过程。ell是一个轻量级、函数式的提示工程

2024-11-29 00:00:15 1728

原创 LLMs之PE:《Efficient and Accurate Prompt Optimization: the Benefit of Memory in Exemplar-Guided Reflec

首先,我们提出了一个示例引导的反思机制。在评估改进后的提示后,我们相应地更新与之相关的反馈的优先级得分,即,对于改进后的性能,我们增加得分,否则降低得分。实证评估表明,我们的方法在优化步骤较少的情况下,优于现有的最佳方法,即在LIAR数据集上提高了10.1的F1分数,在ProTeGi数据集上减少了50%的优化步骤。总而言之,这篇论文提出了一种新颖有效的自动提示词优化方法 ERM,通过巧妙地结合记忆机制、示例引导反思和反馈过滤策略,显著提高了提示词优化的效率和准确性,为提升大型语言模型的性能提供了新的思路。

2024-11-28 01:08:19 1476

原创 LLMs之DDP:基于PySpark实现LLMs场景中的数据分布式预处理之分词和编码(转换Token ID)—初始化Spark集群(连接集群主节点/分配内存资源和CPU核数)→加载词汇表和预处理数据→

​LLMs之DDP:基于PySpark实现LLMs场景中的数据分布式预处理之分词和编码(转换Token ID)—初始化Spark集群(连接集群主节点/分配内存资源和CPU核数)→加载词汇表和预处理数据→定义并执行UDF实现分词和编码→保存结果(保存到HDFS等分布式存储/存储到mysql数据库/将二进制文件(.bin)和索引文件(.idx)存储到HDFS中)→停止Spark会话目录基于PySpark实现LLMs场景中的数据分布式预处理之分词和编码(转换Token ID)—初始化Spark集群(连接

2024-11-27 21:51:08 1044

原创 LLMs:LLMs Course大语言模型课程/教程及其相关文本资料/图片资料/视频资料概览(非正式/但持续更新)、资料集合之详细攻略

​LLMs:LLMs Course大语言模型课程/教程及其相关文本资料/图片资料/视频资料概览(非正式/但持续更新)、资料集合之详细攻略目录相关文章LLMs Course大语言模型课程/教程及其相关文本资料/图片资料/视频资料概览(非正式/但持续更新)、资料集合相关文章Interview之AI:人工智能领域岗位求职面试—人工智能算法工程师知识框架及课程大纲(AI基础之数学基础/数据结构与算法/编程学习基础、ML算法简介、DL算法简介)来理解技术交互流程Interview之

2024-11-24 22:37:31 1383

原创 LLMs之Tool:screenpipe(OCR+RAG)的简介、安装和使用方法、案例应用

​LLMs之Tool:screenpipe(OCR+RAG)的简介、安装和使用方法、案例应用目录Screenpipe 简介Screenpipe 安装和使用方法Screenpipe 案例应用Screenpipe 简介2024年7月,Screenpipe 是一个由 rewind.ai 和 cursor.com 联合开发的 AI 助理,它能够进行 24/7 的屏幕和语音录制,旨在为超级智能时代做好数据准备。其目标是让用户拥有所有上下文信息的 AI 助手。项目标语为“rec

2024-11-20 02:47:41 2829

原创 LLMs之PE之MeP:《Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language M

> 零样本实时语音转换:支持实时语音转换,能够进行即时的语音克隆。目标说话人进行训练,即可将语音转换成目标说话人的声音。>> 零样本唱歌语音转换:能够将语音。

2024-11-20 02:47:06 1267

原创 TTS之Seed-VC:Seed-VC的简介、安装和使用方法、案例应用之详细攻略

​TTS之Seed-VC:Seed-VC的简介、安装和使用方法、案例应用之详细攻略目录Seed-VC 项目简介Seed-VC 的安装和使用方法Seed-VC 的案例应用Seed-VC 项目简介2024年9月,Seed-VC是一个先进的零样本语音转换和唱歌语音转换模型,它利用上下文学习技术,无需任何训练即可克隆语音。只需提供1到30秒的参考语音,Seed-VC就能转换任意语音到目标语音风格。该项目目前支持零样本语音转换、零样本实时语音转换和零样本唱歌语音转换。Git

2024-11-17 23:12:10 4427

原创 LLMs之TokenFormer:《TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters》翻译与解读

​LLMs之TokenFormer:《TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters》翻译与解读目录《TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters》翻译与解读梳理对比:多个维度对比Tokenformer与Transformer的不同之处Abstra

2024-11-17 22:56:16 1909

原创 LLMs之Code:Qwen2.5-Coder的简介、安装和使用方法、案例应用之详细攻略

LLMs之Code:Qwen2.5-Coder的简介、安装和使用方法、案例应用之详细攻略目录Qwen2.5-Coder的简介1、Qwen2.5-Coder 特点Qwen2.5-Coder的安装和使用方法1、安装2、使用方法Qwen2.5-Coder的案例应用1、基础用法Qwen2.5-Coder的简介2024年11月,发布Qwen2.5-Coder 是阿里云Qwen团队开发的Qwen2.5大型语言模型系列的代码版本。它是一个强大的、多样化的、实用的开

2024-11-17 00:04:52 4452

word2vec_wiki.model.rar

NLP之word2vec:利用 Wikipedia Text(中文维基百科)语料+Word2vec工具来训练简体中文词向量 word2vec_wiki.model

2019-05-19

CRNN_CTC_OCR models.rar

DL之CNN:基于CRNN_OCR算法(keras,CNN+RNN)利用DIY数据集训练来实现新图片上的不定长度中文文字识别 https://blog.csdn.net/qq_41185868/article/details/90246673

2019-05-17

MNIST(手写数字图片识别+csv文件)数据集

MNIST(手写数字图片识别+csv文件)数据集简介、下载、使用方法之详细攻略

2019-03-12

IMDB影评数据集

IMDB影评数据集,Dataset之IMDB影评数据集:IMDB影评数据集的简介、下载、使用方法之详细攻略

2019-03-11

Rotten Tomatoes影评数据集

Rotten Tomatoes影评数据集

2019-03-11

数据集—基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM翻译(中英文平行语料库)训练数据集

数据集—基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM翻译(中英文平行语料库)训练数据集—train

2019-02-25

数据集——基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM

数据集——基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM

2019-02-24

微软最有价值专家申请表格MVP Application Form

微软最有价值专家申请表格MVP Application Form,

2019-02-19

希拉里邮件数据集HillaryEmails

希拉里邮件数据集HillaryEmails

2019-02-18

《Apache Pass and Coldstream Update Jan 2017》—修订版3.5—20170131

《Apache Pass and Coldstream Update Jan 2017》—修订版3.5—20170131

2019-02-16

精准资助(train和test数据集)

精准资助(train和test数据集),精准资助(train和test数据集)

2019-01-18

2018年全国大学生计算机技能应用大赛《住房月租金预测大数据赛》数据集

2018年全国大学生计算机技能应用大赛《住房月租金预测大数据赛》数据集

2019-01-18

基于加密算法的图像隐术加密软件

基于加密算法的图像隐术加密 基于加密算法的图像隐术加密

2018-08-04

中国主要城市地图坐标

中国主要城市地图坐标 中国主要城市地图坐标 中国主要城市地图坐标

2018-07-20

MySQL Data(世界上78700多个城市地区(ID、地区名字、所属国家、编号、经纬度、所属省份)

MySQL Data(世界上78700多个城市地区(ID、地区名字、所属国家、编号、经纬度、所属省份).rar

2018-07-20

中国31个省级行政区域GDP数据地图热点图(暂时不包括港澳台).rar

中国31个省级行政区域GDP数据地图热点图(暂时不包括港澳台).rar

2018-07-18

2018最新人工智能行业创新企业Top100名单AI地区热点图

2018最新人工智能行业创新企业Top100名单AI地区热点图

2018-07-18

3D(爬取的14年所有的福彩信息).rar

3D(爬取的14年所有的福彩信息).rar 3D(爬取的14年所有的福彩信息).rar

2018-07-14

Python库之scipy-1.0.0-cp36-none-win_amd64.rar

Python库之scipy-1.0.0-cp36-none-win_amd64.rar,Python库之scipy-1.0.0-cp36-none-win_amd64.rar

2018-07-02

Win系统下使用的pymssql+适合python3.6

Win系统下使用的pymssql+适合python3.6,Win系统下使用的pymssql+适合python3.6

2018-06-22

New York City Taxi Fare Prediction数据集

New York City Taxi Fare Prediction,纽约市出租车票价预测,该数据集包括共计8个字段,分别是key ,fare amount ,pickup datetime ,pickup longitude ,pickup latitude ,dropoff longitude ,dropoff latitude ,passenger count,即键,票价金额,接送日期时间,接送经度,接送纬度,下车经度,下车纬度,乘客数量。

2022-07-28

Medical Data and Hospital Readmissions数据集

Medical Data and Hospital Readmissions,医疗数据和医院再入院情况,该数据集包括共计65个字段,分别是住院时间,实验室操作数,操作数,药物操作数,门诊操作数,急诊操作数,住院操作数,诊断操作数,种族白人,种族非洲裔,性别女性,年龄[70-80],年龄[60-70),年龄[50-60),年龄[80-90),年龄[40-50],支付码?,支付码MC,支付码HM,支付码SP,支付码BC,医学专科?,医学专科内科,医学专科急诊/创伤,医学专科家庭/普通科,医学专科心脏病,诊断1 428等等。

2022-07-28

FIFA 2018 Statistics数据集

FIFA 2018 Statistics数据集的简介         FIFA 2018 Statistics数据集是包含2018 男足世界杯(128 场比赛)基本统计信息,此文件包含 FIFA 2018 比赛统计数据。

2022-07-28

DataScience:风控场景之金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡之详细攻略

DataScience:风控场景之金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡之详细攻略 金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡 1、模型结果转换为标准评分卡步骤 2、实际案例应用 金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡 1、模型结果转换为标准评分卡步骤 借助逻辑回归模型,评分卡所设定的分值刻度,可通过将分值表示为比率对数的线性表达式来定义。 在建立评分卡模型时,我们经常会使用逻辑回归来对数据进行建模。但在用逻辑回归进行预测时,逻辑回归返回的是一个概率值,并不是评分卡分数。下面为大家介绍如何将模型结果转换为标准评分卡。

2022-06-19

ML之FE:IV信息量(Information Value)指标(衡量变量的预测能力)的简介、计算逻辑、使用方法之详细攻略.do

IV,Information Value,信息价值,信息量,用来表示变量对目标预测的贡献程度,也就是预测能力。该指标经常被用在评分卡模型中进行筛选变量。变量的IV值越大,表示自该变量的预测能力越强。但是求IV值,需要先求WOE值,从计算WOE可知,该指标是用在有监督学习,且目标变量为二分类的任务中。

2022-06-17

DataScience:机器学习中特征工程之WOE编码(离散变量编码/有监督)的简介、计算过程、案例应用之详细攻略

DataScience:机器学习中特征工程之WOE编码(离散变量编码/有监督)的简介、计算过程、案例应用之详细攻略 (1)、什么是WOE编码 (2)、案例理解WOE编码 (3)、WOE编码技术的深度思考 (4)、为什么选择采用WOE编码? (5)、WOE编码的优势 WOE编码—离散变量编码(有监督性的编码) 在建模前,我们需要把原始的值转化成WOE值才能使得模型效果好。 提出问题 怎样对字段的每个分段进行评分呢?这个评分是怎么来的? 解决方案 WOE编码, 将预测概率值转化为评分, 利用变量相关性分析和变量的系数符号保证每个分箱评分的合理性。 分箱之后我们便得到了一系列的离散变量,下面需要对变量进行编码,将离散变量转化为连续变量。WOE编码是评分卡模型常用的编码方式。

2022-06-16

nvidia-smi的简介、安装使用的安装包

nvidia-smi的简介、安装使用的安装包

2021-11-14

可视化工具Graphviz

可视化工具Graphviz 2.38

2021-09-19

2021年互联网求职面试—职位(初级中级高级管理)公司面试评价表—非常详细.doc

2021年互联网求职面试—职位(初级中级高级管理)公司面试评价表—非常详细

2021-09-04

《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》

人工智能领域—计算机视觉最新文章观察,2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》67页pdf原文

2021-03-03

babyboom.dat.rar

1997年12月18日,在澳大利亚昆士兰州布里斯班的圣母医院,24小时内诞生了44个婴儿,这是一项新的记录。对于这44个婴儿,《星期日邮报》记录了他们的出生时间、性别和出生时的体重(以克为单位)。此外,还包括了每名婴儿从午夜到出生的时间。

2021-02-24

机器学习算法中自然语言处理常用数据集(新闻数据集news.csv)及jieba_dict字典、停用词等相关文件

机器学习算法中自然语言处理常用数据集(新闻数据集news.csv)及jieba_dict字典、停用词等相关文件,包括以下文件 data/news.csv jieba_dict/dict.txt.big jieba_dict/stopwords.txt jieba_dict/stopwords_s.txt

2020-12-22

Big Mart Sales数据集

Big_Mart_Sales数据集包括Test_u94Q5KV.csv和Train_UWu5bXk.csv

2020-12-17

stock_dataset(1990~2015股票最高单变量数据集).rar

本文档为数据集,1990~2015股票最高单变量数据集。stock_dataset(1990~2015股票最高单变量数据集).rar

2019-12-27

graph_opt—CV之DNN:基于OpenPose的OpenCV利用DNN算法实现对单人体姿态(美女跳舞)实时估计检测.rar

graph_opt—CV之DNN:基于OpenPose的OpenCV利用DNN算法实现对单人体姿态(美女跳舞)实时估计检测.rar

2019-12-17

dlib.shape_predictor(shape_predictor_68_face_landmarks_dat).rar

dlib.shape_predictor(shape_predictor_68_face_landmarks_dat).rar

2019-12-16

mnist数据集下载的完整代码——mnist_download_main.rar

基于python语言,mnist数据集下载的完整代码,mnist_download_main.rar

2019-07-29

201905—机器学习之特征工程—六天课程知识总结的思维导图.pdf

201905—机器学习之特征工程—六天课程知识总结的思维导图.pdf

2019-06-25

Html网页(js+css)实现情人节表白神器三套.rar

Html网页(js+css)实现情人节表白神器三套 Love:程序猿的方式~【情人节&520;—我爱你】~动画加音效 → 那些年最浪漫的表白(帮你得到你的她) https://yunyaniu.blog.csdn.net/article/details/79430987

2019-05-20

AutoKeras测试代码使用数据集(Dataset:(公交车、恐龙、大象、花朵、骏马)六类图片数据集

AutoKeras测试代码使用数据集(Dataset:(公交车、恐龙、大象、花朵、骏马)六类图片数据集(AutoKeras测试)的简介、下载、使用方法之详细攻略).rar

2019-05-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除