多目标跟踪 | 评测指标

本文详细介绍了多目标跟踪的评测指标,包括MOTA、MOTP、IDP、IDR、IDF1以及HOTA,同时讨论了MOT Challenge和kitti数据集在多目标跟踪中的应用,最后提到了几种流行的跟踪方案如DeepSort、JDE和FairMOT。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

多目标跟踪器的性能需要某些指标来进行度量,目前使用比较广泛的评测指标主要有 Bernardin 等人定义的 CLEAR MOT 指标、Ristani 等人定义的 ID scores 指标以及最新的 Luiten 等人定义的HOTA 指标。

目录

一、基础的评测指标

二、MOTA 和 MOTP

2.1 MOTA:多目标跟踪精度 。

2.2 MOTP: 多目标跟踪准确度

三、IDP、IDR、IDF

3.1 IDP:识别精确度

3.2 IDR:识别召回率

 3.3 IDF1:平均数比率

四、HOTA 更高维跟踪精度

五、MOT Challenge 多目标跟踪

六、kitti 多目标跟踪

七、方案选择

7.1 DeepSort

7.2 JDE

7.3 FairMOT


一、基础的评测指标

1、ID Switches (ID Sw.):被跟踪目标身份发生错误地更改时被称为身份跳变。在对视频序列的跟踪过程当中,ID Sw.表示所有跟踪目标身份交换的次数。

2、Frames Per Second (FPS):多目标跟踪器的跟踪速度。

3、False Positives (FP):在视频序列中不能与 真实轨迹的边界框 相匹配的 假设边界框 被称为假阳性;即本来是假的,预测认为是真的。FP 表示整个视频序列中假阳性的数量。

4、False Negatives (FN):在视频序

### 多目标跟踪的评估指标 多目标跟踪(Multi-Object Tracking, MOT)是一项复杂的技术任务,其核心在于精确地估计视频序列中的多个运动对象的位置并分配唯一的身份标识。为了全面评价一个多目标跟踪算法的表现,通常会使用一组标准化的定量指标来衡量不同方面的能力。 #### 跟踪精度 (Multiple Object Tracking Accuracy, MOTA) MOTA 是一种综合性的指标,用于量化整体跟踪效果的好坏。它通过减少三类错误——漏检(Misses)、误报(False Positives)和 ID 切换(Identity Switches)的数量来提高分数。具体定义如下: \[ \text{MOTA} = 1 - \frac{\sum (\text{misses}, \text{false positives}, \text{id switches})}{\sum \text{ground truth objects}} \] 其中分子部分代表所有可能影响跟踪质量的因素总和,分母则表示真实标注的目标总数[^1]。 #### 平均距离误差 (Multiple Object Tracking Precision, MOTP) 不同于 MOTA 关注的是匹配上的正确程度而非数量多少,MOTP 反映了平均每次成功配对时预测框中心点偏离实际位置的程度: \[ \text{MOTP}=\frac{{\Sigma}_{i=1}^{n}\left(\mathrm{}d_{i}\right)}{{\Sigma}_{j=1}^{m}\left(o_j\right)} \] 这里 \( d_i \) 表示第 i 对检测结果与对应真值间的欧几里得距离; o_j 记录有多少次有效关联发生过。 #### 其他补充性统计量 除了上述两项关键性能参数外,还有一些辅助性质的数据可以帮助进一步理解系统的优劣之处: - **Mostly Tracked Targets (MT):** 至少80%的时间都被持续追踪到的对象比例。 - **Partially Tracked Targets (PT):** 时间覆盖率介于20%-80%之间的那些个体所占百分比。 - **Mostly Lost Targets (ML):** 少于20%生命周期获得监控的情况占比情况。 - **False Positive Rate:** 单位时间内产生的额外虚假发现次数频率。 - **False Negative Rate:** 应当识别却未被捕捉到的真实实体数目比率。 - **Fragmentations:** 同一物体因各种原因中途断开再重新连接形成的片段总计数。 - **ID Switch Count:** 整个过程中发生的重复编号现象累计计数值。 这些丰富的维度共同构成了完整的评测体系框架,使得研究人员能够更加细致入微地分析各自方案的优势劣势所在,并据此做出针对性改进措施。 ```python def calculate_mota(misses, fps, id_switches, gt_objects): mota = 1 - ((misses + sum(fps.values()) + id_switches)/gt_objects) return mota ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值