yolov5/v7/v8/v9/v10/v11环境详细配置教程(Windows+conda+pycharm)

目录

一、所需环境配置 

1.1. 虚拟环境创建

1.2. 激活虚拟环境

1.3 安装pytorch

二、安装yolo相关环境


一、所需环境配置 

1.1. 虚拟环境创建

首先,打开Anaconda Prompt命令窗口,创建一个新的虚拟环境,后面的包都在这个环境中安装。创建命令是:我的习惯是使用3.8版本的python,你也可以换成更高版本;

conda create -n yolo python=3.8

输入命令后,运行结果如下:输入y即可;

1.2. 激活虚拟环境

安装完成后,即可激活虚拟环境,输入以下命令即可;

conda activate yolo

激活成功之后如图所示; 

1.3 安装pytorch

gpu版本的安装命令:想要安装其他版本可以去pytorch官网自己找

conda install pytorch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 pytorch-cuda=12.1 -c pytorch -c nvidia

二、安装yolo相关环境

安装ultralytics包;

pip install ultralytics

安装完成后可以通过conda list查看环境中是否安装完成。

然后安装pyqt5

pip install pyqt5

 可以复制下面的代码来验证一下是否可以运行。

yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'

到这里,yolo系列算法的环境配置算是完成了!

其中遇到的问题欢迎大家留言!我也会持续更新

要在新的Windows或Linux电脑上搭建YOLOv11(You Only Look Once)环境,首先需要安装必要的软件和库。以下是步骤概述: 1. **安装Python基础**: - 下载并安装Python(建议版本3.x)。可以去Python官方网站下载最新稳定版。 2. **设置Python路径**: - 在环境变量PATH中添加Python的安装目录,以便系统能够识别Python命令。 3. **安装依赖库**: - 使用pip安装一些基本的库,如`torch`, `numpy`, `Pillow`, 和 `setuptools`等。运行以下命令: ``` pip install torch torchvision numpy pillow setuptools ``` 4. **选择深度学习框架**: - YOLOv11通常基于PyTorch。如果你还没安装,可以这样安装: ``` pip install torch torchvision ``` 5. **克隆YOLOv11源码**: - 从GitHub上克隆YOLOv11仓库: ``` git clone https://github.com/AlexeyAB/darknet.git cd darknet ``` 6. **构建YOLO模型**: - 进入darknet文件夹,修改Makefile(如果存在),将CUDA和cuDNN支持设置为你电脑上已有的。然后运行`make yolo11`命令编译模型。注意,这一步需要安装CUDA和cuDNN,以及相应的开发工具。 7. **配置网络训练数据**: - 创建一个包含训练图片和标签的数据集,并将其配置到darknet下的cfg文件(例如data.cfg)和labels.txt文件中。 8. **训练模型**: - 运行`./darknet detector train data.cfg yolov11.cfg weights/yolov11.weights -map yolov11_train_map.csv`,开始训练过程。这里假设已经下载了预训练权重`yolov11.weights`。 9. **验证和测试**: - 训练完成后,你可以使用`./darknet detector test data.cfg yolov11.cfg yolov11_final.weights`测试模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值