【AirComp&Weiszfeld】Byzantine-Resilient Federated Machine Learning via Over-the-Air Computation

Byzantine-Resilient Federated Machine Learning via Over-the-Air Computation

通过空中计算的拜占庭弹性联合机器学习

论文

Abstract

在无线资源有限的无线网络中设计拜占庭弹性FL范式,提出一种基于空中计算的通信效率鲁棒模型聚合方案。
应用Weiszfeld算法获得针对拜占庭攻击的平滑几何中值聚合,利用该算法的加法结构,通过AirComp匹配多址信道的信号叠加性,加快FL通信高效聚合。

一、INTRODUCTION

差分隐私
在传输之前将随机扰动引入局部模型。

通过非编码传输,信道噪声亦可充当隐私诱导机制。

拜占庭攻击分为三类:
数据中毒攻击、模型中毒攻击、搭便车攻击。

FL算法分为四类:
鲁棒聚合规则、从理论角度的信息预处理方法、带正则化项的模型、对抗检测。

聚合规则:
几何中值geometric mean、坐标中值coordinate-wise mean、修剪均值trimmed mean、Krum

几何中值聚合要求求解凸优化问题,模型参数较大时,计算复杂度过高,采用改进的Weiszfeld算法,引入一个用于数值稳定的平滑因子。

基于无线网络中的信息交换受无线资源的限制,提出基于AirComp的新型通信高效鲁棒聚合方案,利用多址信道的信号叠加特性来提高通信效率并减少所需带宽。

二、SYSTEM MODEL

A. Federated Learning Model

一个服务器, K K K 个设备,设备 k ∈ K k \in \mathcal{K} kK 有自己的本地数据。
在这里插入图片描述
w ∈ R d w\in \mathbb{R}^d wRd :表示全局模型的参数
ξ ∈ Ξ \xi\in\Xi ξΞ :按一定概率分布的随机样本变量
f : R d × Ξ f:\mathbb{R}^d \times \Xi f:Rd×Ξ:表示损失函数
对设备 k ∈ K k \in \mathcal{K} kK D k \mathcal{D}_k Dk Ξ \Xi Ξ 上的概率分布
α k \alpha_k αk :每个设备的相对权重, ∑ k ∈ K α k = 1 \sum_{k\in \mathcal{K}}\alpha_k = 1 kKαk=1 α k = n k n \alpha_k = \frac{n_k}{n} αk=nnk
n k n_k nk为设备 k k k中的数据样本, n = ∑ k ∈ K n k n=\sum_{k\in \mathcal{K}}n_k n=kKnk 是数据样本总数。

假设 f ( ⋅ ; ξ ) f(\cdot;\xi) f(;ξ) 对于 ξ \xi ξ 连续可微。

随机变量 ξ = ( x , y ) \xi=(x,y) ξ=(x,y) 是一个数据标签对
损失函数 f ( w ; ξ ) = l ( y , ϕ ( x ; w ) ) f(w;\xi)=l(y,\phi(x;w)) f(w;ξ)=l(y,ϕ(x;w)),其中 ϕ \phi ϕ 将数据 x x x 映射到一个用模型参数 w w w 做出的预测, l l l 是一个特定损失函数,如 平方损失和交叉熵。
映射函数可以是: ϕ ( x , w ) = w T x \phi(x,w)=w^Tx ϕ(x,w)=wTx

B. Byzantine Attack and Robust Aggregation

假设系统中 K K K 个设备中有 B B B 个拜占庭设备,拜占庭设备集合 B \cal{B} B。当 B < K 2 B<\frac{K}{2} B<2K 时,具有几何中值聚集规则的分布式SGD线性收敛于最优解。

在这里插入图片描述
α k > 0 \alpha_k>0 αk>0 为权重, ∣ ∣ ⋅ ∣ ∣ ||\cdot || ∣∣∣∣ 为欧氏距离,求解空间 R d \mathbb{R}^d Rd中距离最小的向量 { w k , k ∈ K } \lbrace w_k,k\in \cal{K} \rbrace {wk,kK} g ( z ) : = ∑ k ∈ K α k ∣ ∣ z − w k ∣ ∣ g(z) := \sum_{k\in\cal{K}}\alpha_k ||z-w_k|| g(z):=kKαk∣∣zwk∣∣

在这里插入图片描述

C. Smoothed Geometric Median

引入平滑因子 v > 0 v>0 v>0 来避免分母的极小值,平滑函数表示为:
在这里插入图片描述
可以通过Weiszfeld算法进行凸优化:
在这里插入图片描述
w ( t ) w^{(t)} w(t) 为Weiszfeld算法的初始迭代点,算法1中需要几轮迭代才能照奥防御拜占庭攻击的平滑几何中值,计算开销通信成本过大。
在这里插入图片描述

三、COMMUNICATION-EFFICIENT MODEL AGGREGATION PROTOCOL

四、SIMULATION RESULTS

A. Simulation Setup

MINIST手写数据集,60000个训练数据,随机分为 K = 50 K=50 K=50 子样本,权重为 α k = 1 K \alpha_k=\frac{1}{K} αk=K1,batch为 b = 50 b=50 b=50,学习率 1 0 − 2 10^{-2} 102

Weiszfeld算法内:
最大迭代次数:1000
中断容忍度: 1 0 − 5 10^{-5} 105
平滑因子: v = 1 0 − 4 v=10^{-4} v=104

攻击

  • class flip: 数据中毒攻击,拜占庭设备上每个训练标签都被替换为 9 − i 9-i 9i
  • weight flip:模型中毒攻击,对拜占庭设备发送的模型参数进行修改,取没有攻击时加权平均值得负值,在这里插入图片描述
B. Performance Evaluation

略。

五、CONCLUSION

好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值