高等数学(Infinite Series)

无穷级数

常数项级数的概念和性质

定义
(1) 数列 { a n } = a 1 , a 2 , ⋯   , a n , ⋯ \{a_n\}=a_1,a_2,\cdots,a_n,\cdots {an}=a1,a2,,an, 构成的表达式 ∑ n = 1 ∞ a n = a 1 + a 2 + ⋯ + a n + ⋯ \displaystyle\sum_{n=1}^{∞}a_n=a_1+a_2+\cdots+a_n+\cdots n=1an=a1+a2++an+ 叫做(常数项)无穷级数,简称(常数项)级数。其中第n项 a n a_n an叫做级数的通项(general term)。
(2) 级数的前n项部分和(partial sum) S n = a 1 + a 2 + ⋯ + a n S_n=a_1+a_2+\cdots+a_n Sn=a1+a2++an
(3) 对于级数 { a n } \{a_n\} {an},若其部分和数列 { S n } \{S_n\} {Sn}有极限S,即 lim ⁡ n → ∞ S n = S \lim\limits_{n\to∞}S_n=S nlimSn=S,则称级数收敛(convergence),S 称为该级数的和,记为 ∑ n = 1 ∞ a n = S \displaystyle\sum_{n=1}^{∞}a_n=S n=1an=S,若部分和数列 { S n } \{S_n\} {Sn}没有极限,则称级数发散(divergence)。
(4) 当级数 { a n } \{a_n\} {an}收敛,其部分和 { S n } \{S_n\} {Sn}是级数和S的近似值,他们的差值 r n = S n − S r_n=S_n-S rn=SnS叫做级数的余项(remainder)。

收敛级数基本性质
性质 1(级数收敛的必要条件)若级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛,则有 lim ⁡ n → ∞ a n = 0 \lim\limits_{n\to∞}a_n=0 nliman=0
性质 2 设级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn分别收敛于 A A A B B B,则级数 ∑ n = 1 ∞ ( a n ± b n ) \displaystyle\sum_{n=1}^{∞}(a_n± b_n) n=1(an±bn)也收敛,且其和为 A ± B A± B A±B
性质 3 若级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛于 S S S,则 ∑ n = 1 ∞ k a n \displaystyle\sum_{n=1}^{∞}ka_n n=1kan收敛于 k S kS kS
性质 4 增加或减少级数中的有限项不改变原级数的收敛性,即级数的收敛性与前有限项无关
性质 5 设级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛,则在不改变级数项前后位置的条件下,任意结合级数的有限项得到新级数 ∑ n = 1 ∞ a n ′ \displaystyle\sum_{n=1}^{∞}a'_n n=1an,则新级数也收敛,且和不变.
性质 6又称柯西审敛原理 (Cauchy’s convergence test)
级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛    ⟺    ∀ ϵ > 0 , ∃ N ∈ N + \iff ∀ ϵ>0,∃ N\in\N^+ ϵ>0,NN+,当 n > N n>N n>N时,对于 ∀ p ∈ N + ∀ p\in\N^+ pN+,都有 ∣ a n + 1 + a n + 1 + ⋯ + a n + p ∣ < ϵ |a_{n+1}+a_{n+1}+\cdots+a_{n+p}|<ϵ an+1+an+1++an+p<ϵ

常数项级数的审敛法

正项级数(series of positive terms):若 a n > 0 a_n>0 an>0,则称级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an为正项级数。
正项级数的审敛法:设 ∑ n = 1 ∞ a n 和 ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}a_n和\displaystyle\sum_{n=1}^{∞}b_n n=1ann=1bn为正项级数
定理 1 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛    ⟺    \iff 部分和数列 { S n } \{S_n\} {Sn}有界
定理 2 (比较判别法的不等式形式)若 a n ⩽ b n ( n = 1 , 2 , ⋯   ) a_n⩽ b_n (n=1,2,\cdots) anbn(n=1,2,)
(1) 当级数 ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn收敛时,级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an也收敛
(2) 当级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an发散时,级数 ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn也发散
定理 3 (比较判别法的极限形式)若 lim ⁡ n → ∞ a n b n = l ( 0 ⩽ l ⩽ + ∞ ) \lim\limits_{n\to∞}\dfrac{a_n}{b_n}=l(0⩽ l ⩽+∞) nlimbnan=l(0l+),则
(1) 当 0 < l < + ∞ 0<l<+∞ 0<l<+时,级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn有相同的敛散性
(2) 当 l = 0 l=0 l=0时,如果级数 ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn收敛,那么 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛
(3) 当 l = + ∞ l=+∞ l=+时,如果级数 ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn发散,那么 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an发散.
定理 4 (比值判别法,达朗贝尔判别法)若 lim ⁡ n → ∞ a n + 1 a n = q \lim\limits_{n\to∞}\dfrac{a_{n+1}}{a_n}=q nlimanan+1=q,则
(1) 当 0 ⩽ q < 1 0⩽ q<1 0q<1时,级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛
(2) 当 q > 1 q>1 q>1时,级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an发散
定理 5 (根值判别法,柯西判别法)若 lim ⁡ n → ∞ a n n = q \lim\limits_{n\to∞}\sqrt[n]{a_n}=q nlimnan =q,则
(1) 当 0 ⩽ q < 1 0⩽ q<1 0q<1时,级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛
(2) 当 q > 1 q>1 q>1时,级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an发散
定理 6 若正项级数 ∑ n = 1 ∞ ∣ a n ∣ \displaystyle\sum_{n=1}^{∞}|a_n| n=1an收敛,则级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛,且 ∣ ∑ n = 1 ∞ a n ∣ ⩽ ∑ n = 1 ∞ ∣ a n ∣ |\displaystyle\sum_{n=1}^{∞}a_n|⩽ \displaystyle\sum_{n=1}^{∞}|a_n| n=1ann=1an

交错级数(alternating series):正负项交错出现的级数
交错级数的审敛法
定理 7 (莱布尼兹判别法)对于交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 a n \displaystyle\sum_{n=1}^{∞}(-1)^{n-1}a_n n=1(1)n1an,若满足
(1) a n ⩾ a n + 1 ( n = 1 , 2 , ⋯   ) a_n⩾ a_{n+1}(n=1,2,\cdots) anan+1(n=1,2,)
(2) lim ⁡ n → ∞ a n = 0 \lim\limits_{n\to∞}a_n=0 nliman=0
则级数收敛,且其和 S ⩽ a 1 S⩽ a_1 Sa1,余项的绝对值 r n ⩽ a n + 1 r_n⩽ a_{n+1} rnan+1

绝对收敛和条件收敛:若级数 ∑ n = 1 ∞ ∣ a n ∣ \displaystyle\sum_{n=1}^{∞}|a_n| n=1an收敛,则称级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an为绝对收敛(absolutely convergent).若级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an收敛,而级数 ∑ n = 1 ∞ ∣ a n ∣ \displaystyle\sum_{n=1}^{∞}|a_n| n=1an发散,则称级数为条件收敛(conditionally convergent).
定理 8 绝对收敛的级数一定收敛,反之则不然
定理 9 绝对收敛的级数经改变项的位置后构成的新级数也收敛,且与原级数有相同的和(即绝对收敛的级数具有可交换性)
定理 10(绝对收敛级数的乘积)设 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{∞}a_n n=1an ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{∞}b_n n=1bn为绝对收敛的级数,他们的和分别为 A 和 B A和B AB,则它们的柯西乘积 ∑ n = 1 ∞ ( a n b 1 + a n − 1 b 2 + ⋯ + a 1 b n ) \displaystyle\sum_{n=1}^{∞}(a_nb_1+a_{n-1}b_2+\cdots+a_1b_n) n=1(anb1+an1b2++a1bn)仍为绝对收敛,且其和为 A ⋅ B A\cdot B AB

函数项级数收敛与一致收敛

函数项级数(series of functions)
(1) 定义在区间D上的函数列 { u n ( x ) } = u 1 ( x ) , u 2 ( x ) , ⋯   , u n ( x ) , ⋯ \{u_n(x)\}=u_1(x),u_2(x),\cdots,u_n(x),\cdots {un(x)}=u1(x),u2(x),,un(x),构成的表达式 ∑ n = 1 ∞ u n ( x ) = u 1 ( x ) + u 2 ( x ) + ⋯ + u n ( x ) + ⋯ \displaystyle\sum_{n=1}^{∞}u_n(x)=u_1(x)+u_2(x)+\cdots+u_n(x)+\cdots n=1un(x)=u1(x)+u2(x)++un(x)+ 叫做(函数项)无穷级数,简称(函数项)级数。
(2) 对每一个确定的值 x 0 ∈ D x_0\in D x0D ,函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum_{n=1}^{∞}u_n(x) n=1un(x)成为常数项级数 ∑ n = 1 ∞ u n ( x 0 ) \displaystyle\sum_{n=1}^{∞}u_n(x_0) n=1un(x0),若常数项级数收敛,则称点 x 0 x_0 x0为函数项级数的收敛点,收敛点的全体称为收敛域;若常数项级数发散,则称级数点 x 0 x_0 x0为函数项级数的发散点,发散点的全体称为发散域
(3) 若 Ω Ω Ω为函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum_{n=1}^{∞}u_n(x) n=1un(x)的收敛域,则对每个 x ∈ Ω x\inΩ xΩ,存在惟一的 S ( x ) = ∑ n = 1 ∞ u n ( x ) S(x)=\displaystyle\sum_{n=1}^{∞}u_n(x) S(x)=n=1un(x) S ( x ) S(x) S(x)称为函数项级数的和函数
(4) 函数项级数前项部分和记作 S n ( x ) , r n ( x ) = S ( x ) − S n ( x ) S_n(x), r_n(x)=S(x)-S_n(x) Sn(x),rn(x)=S(x)Sn(x)为余项,则在收敛域上有 lim ⁡ n → ∞ S n ( x ) = S ( x ) 或 lim ⁡ n → ∞ r n ( x ) = 0 \lim\limits_{n\to∞}S_n(x)=S(x)或\lim\limits_{n\to∞}r_n(x)=0 nlimSn(x)=S(x)nlimrn(x)=0

一致收敛(uniform convergence)
定义1设函数序列 { u n ( x ) } \{u_n(x)\} {un(x)}在收敛域D上逐点收敛于 u ( x ) u(x) u(x),如果对于任意 ϵ > 0 ϵ>0 ϵ>0 ,存在只依赖于 ϵ ϵ ϵ 的正整数N,使得当 n > N n>N n>N时,恒有 ∣ u n ( x ) − u ( x ) ∣ < ϵ , ∀ x ∈ D |u_n(x)-u(x)|<ϵ,∀ x\in D un(x)u(x)<ϵ,xD,则称函数序列 { u n ( x ) } \{u_n(x)\} {un(x)}在D上一致收敛于函数 u ( x ) u(x) u(x)
定义2设函数项级数 ∑ n = 1 ∞ u n ( x ) 在 I \displaystyle\sum_{n=1}^{∞}u_n(x)在I n=1un(x)I上的和函数为 S ( x ) S(x) S(x) ,若其部分和函数序列 { S n ( x ) } 在 I \{S_n(x)\}在I {Sn(x)}I上一致收敛于 S ( x ) S(x) S(x),则称函数项级数 ∑ n = 1 ∞ u n ( x ) 在 I \displaystyle\sum_{n=1}^{∞}u_n(x)在I n=1un(x)I 上一致收敛于和函数 S ( x ) S(x) S(x).
一致收敛
定理(魏尔斯特拉斯判别法):如果函数项级数 ∑ n = 1 ∞ u n ( x ) 在 区 间 I \displaystyle\sum_{n=1}^{∞}u_n(x)在区间I n=1un(x)I满足条件:
(1) ∀ x ∈ I , ∣ u n ( x ) ∣ ⩽ M n ( n = 1 , 2 , ⋯   ) ∀ x\in I,|u_n(x)|⩽ M_n(n=1,2,\cdots) xI,un(x)Mn(n=1,2,)
(2)正项级数 ∑ n = 1 ∞ M n \displaystyle\sum_{n=1}^{∞}M_n n=1Mn收敛
则函数项级数 ∑ n = 1 ∞ u n ( x ) 在 区 间 I \displaystyle\sum_{n=1}^{∞}u_n(x)在区间I n=1un(x)I上一致收敛

函数项级数的基本性质

设函数项级数 ∑ n = 1 ∞ u n ( x ) 在 I \displaystyle\sum_{n=1}^{∞}u_n(x)在I n=1un(x)I 上一致收敛于和函数 S ( x ) S(x) S(x)
定理 1 (连续) lim ⁡ x → x o S ( x ) = S ( x 0 )    ⟺    lim ⁡ x → x o ∑ n = 1 ∞ u n ( x ) = ∑ n = 1 ∞ u n ( x 0 ) \lim\limits_{x\to x_o}S(x)=S(x_0)\iff \lim\limits_{x\to x_o}\displaystyle\sum_{n=1}^{∞}u_n(x)=\displaystyle\sum_{n=1}^{∞}u_n(x_0) xxolimS(x)=S(x0)xxolimn=1un(x)=n=1un(x0)
定理 2 (积分) ∫ x 0 x S ( x ) d x = ∑ n = 1 ∞ ∫ x 0 x u n ( x ) d x    ⟺    ∫ x 0 x ∑ n = 1 ∞ u n ( x ) d x = ∑ n = 1 ∞ ∫ x 0 x u n ( x ) d x \displaystyle\int_{x_0}^{x} S(x)dx=\displaystyle\sum_{n=1}^{∞}\int_{x_0}^{x}u_n(x)dx\iff \displaystyle\int_{x_0}^{x}\sum_{n=1}^{∞}u_n(x)dx=\displaystyle\sum_{n=1}^{∞}\int_{x_0}^{x}u_n(x)dx x0xS(x)dx=n=1x0xun(x)dxx0xn=1un(x)dx=n=1x0xun(x)dx
定理 3 (导数) S ′ ( x ) = ∑ n = 1 ∞ u n ′ ( x ) S'(x)=\displaystyle\sum_{n=1}^{∞}u'_n(x) S(x)=n=1un(x)

幂级数的收敛域与和函数

定义:形如 ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + ⋯ + a n ( x − x 0 ) n + ⋯ \displaystyle\sum_{n=0}^{∞}a_n(x-x_0)^n=a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)^n+\cdots n=0an(xx0)n=a0+a1(xx0)++an(xx0)n+的级数称为幂级数(power series),常数 a 0 , a 1 , ⋯   , a n , ⋯ a_0,a_1,\cdots,a_n,\cdots a0,a1,,an,称为幂级数的系数,特别令 x 0 = 0 x_0=0 x0=0 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn
定理 1(Abel 定理)
(1)若幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn在点 x = x 0 ( x 0 ≠ 0 ) x=x_0(x_0\neq0) x=x0(x0=0)处收敛,则它对于满足不等式 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| x<x0 的一切 x x x 都绝对收敛;
(2)若幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn在点 x = x 0 x=x_0 x=x0处发散,则它对于满足不等式 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_0| x>x0 的一切 x x x 都发散

收敛半径(radius of convergence)
定理 2如果幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn既有不等于零的收敛点,又有发散点,则必存在唯一的正数 R ∈ R + R\in\R^+ RR+ ,使得当 ∣ x ∣ < R |x|<R x<R 时,该幂级数绝对收敛;当 ∣ x ∣ > R |x|>R x>R 时,该幂级数发散;当 ∣ x ∣ = R |x|=R x=R 时,该幂级数可能收敛也可能发散。
R R R通常叫做收敛半径;开区间 ( − R , R ) (-R,R) (R,R) 叫做收敛区间,再加上收敛端点就构成收敛域了
两种特殊情形:
(1)幂级数只在 x = 0 x=0 x=0 处收敛时,收敛半径 R = 0 R=0 R=0
(2)幂级数在整个数轴上收敛时,规定收敛半径 R = + ∞ R=+∞ R=+

收敛半径的计算
定理 3 对于幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn,若 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ 或 lim ⁡ n → ∞ ∣ a n ∣ n = ρ \lim\limits_{n\to∞}|\dfrac{a_{n+1}}{a_n}|=ρ或\lim\limits_{n\to∞}\sqrt[n]{|a_n|}=ρ nlimanan+1=ρnlimnan =ρ,其中 ρ ⩾ 0 ρ⩾0 ρ0,则该幂级数的收敛半径为 R = 1 ρ R=\dfrac{1}{ρ} R=ρ1
一般幂级数的收敛半径:对于一般幂级数 ∑ n = 0 ∞ a n ( x − x 0 ) n \displaystyle\sum_{n=0}^{∞}a_n(x-x_0)^n n=0an(xx0)n,除收敛域为 { x 0 } \{x_0\} {x0} ( − ∞ , + ∞ ) (-∞,+∞) (,+)两种情形,一定存在正数 R R R的收敛半径。
收敛半径

幂级数的四则运算
设幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn ∑ n = 0 ∞ b n x n \displaystyle\sum_{n=0}^{∞}b_nx^n n=0bnxn的收敛半径分别为 R 1 , R 2 R_1,R_2 R1,R2,令 R = min ⁡ { R 1 , R 2 } R=\min\{R_1,R_2\} R=min{R1,R2},则它们的和、差、乘积在公共收敛区间 ( − R , R ) (-R,R) (R,R)内都绝对收敛,且有
∑ n = 0 ∞ a n x n ± ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ ( a n ± b n ) x n , ( − R < x < R ) ( ∑ n = 0 ∞ a n x n ) ( ∑ n = 0 ∞ b n x n ) = ∑ n = 0 ∞ c n x n , ( − R < x < R ) \displaystyle\sum_{n=0}^{∞}a_nx^n± \displaystyle\sum_{n=0}^{∞}b_nx^n=\displaystyle\sum_{n=0}^{∞}(a_n± b_n)x^n,(-R<x<R)\\ (\displaystyle\sum_{n=0}^{∞}a_nx^n)(\displaystyle\sum_{n=0}^{∞}b_nx^n)=\displaystyle\sum_{n=0}^{∞}c_nx^n,(-R<x<R) n=0anxn±n=0bnxn=n=0(an±bn)xn,(R<x<R)(n=0anxn)(n=0bnxn)=n=0cnxn,(R<x<R)
其中 c n = a 0 b n + a 1 b n − 1 + ⋯ + a n − 1 b 1 + a n b 0 c_n=a_0b_n+a_1b_{n-1}+\cdots+a_{n-1}b_1+a_nb_0 cn=a0bn+a1bn1++an1b1+anb0

幂级数和函数的基本性质
性质 1 (幂级数和函数的连续性) 幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn的和函数 S ( x ) S(x) S(x)在其收敛域上连续
性质 2 (幂级数可逐项积分)幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn的和函数 S ( x ) S(x) S(x)在其收敛域 I I I上可积,并有逐项积分公式
∫ 0 x S ( x ) d x = ∫ 0 x ∑ n = 0 ∞ a n x n d x = ∑ n = 0 ∞ ∫ 0 x a n x n d x = ∑ n = 0 ∞ a n n + 1 x n + 1 \displaystyle\int_0^xS(x)dx=\displaystyle\int_0^x\sum_{n=0}^{∞}a_nx^ndx=\displaystyle\sum_{n=0}^{∞}\int_0^xa_nx^ndx=\displaystyle\sum_{n=0}^{∞}\frac{a_n}{n+1}x^{n+1} 0xS(x)dx=0xn=0anxndx=n=00xanxndx=n=0n+1anxn+1
逐项积分后的得到的幂级数和原级数有相同的收敛半径
性质 3 幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn的和函数 S ( x ) S(x) S(x)在其收敛区间 ( − R , R ) (-R,R) (R,R)上可导,并有逐项求导公式
S ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 S'(x)=(\displaystyle\sum_{n=0}^{∞}a_nx^n)'=\displaystyle\sum_{n=0}^{∞}(a_nx^n)'=\displaystyle\sum_{n=1}^{∞}na_nx^{n-1} S(x)=(n=0anxn)=n=0(anxn)=n=1nanxn1
逐项求导后的得到的幂级数和原级数有相同的收敛半径
推论 幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^{∞}a_nx^n n=0anxn的和函数 S ( x ) S(x) S(x)在其收敛区间 ( − R , R ) (-R,R) (R,R)上具有任意阶导数

函数的幂级数展开

幂 级 数 ∑ n = 0 ∞ a n x n 或 ∑ n = 0 ∞ a n ( x − x 0 ) n ⇌ e x p a n d s u m 和 函 数 S ( x ) \boxed{幂级数\displaystyle \sum_{n=0}^{∞}a_nx^n 或\sum_{n=0}^{∞}a_n(x-x_0)^n} \xrightleftharpoons[expand]{sum} \boxed{和函数S(x)} n=0anxnn=0an(xx0)nsum expandS(x)
泰勒级数
(1) 假设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域内 U ( x 0 ) U(x_0) U(x0)能展开成幂级数,即有
f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + ⋯ + a n ( x − x 0 ) n + ⋯   , x ∈ U ( x 0 ) f(x)=\displaystyle\sum_{n=0}^{∞}a_n(x-x_0)^n=a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)^n+\cdots,x\in U(x_0) f(x)=n=0an(xx0)n=a0+a1(xx0)++an(xx0)n+,xU(x0)
(2) 由幂级数和函数的性质可知, f ( x ) f(x) f(x) U ( x 0 ) U(x_0) U(x0)内有任意阶导,且 f ( n ) ( x 0 ) = n ! a n f^{(n)}(x_0)=n!a_n f(n)(x0)=n!an,于是 a n = 1 n ! f ( n ) ( x 0 ) , ( n = 0 , 1 , 2 , ⋯   ) a_n=\dfrac{1}{n!}f^{(n)}(x_0),(n=0,1,2,\cdots) an=n!1f(n)(x0),(n=0,1,2,)
(3) 这就表明,若函数 f ( x ) f(x) f(x) U ( x 0 ) U(x_0) U(x0)有幂级数,则展开式为
f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n , x ∈ U ( x 0 ) f(x)=\displaystyle\sum_{n=0}^{∞}\dfrac{1}{n!}f^{(n)}(x_0)(x-x_0)^n,x\in U(x_0) f(x)=n=0n!1f(n)(x0)(xx0)n,xU(x0)
此幂级数叫做泰勒级数(Taylor series),当 x 0 = 0 x_0=0 x0=0时,为麦克劳林级数(Maclaurin series)。
定理 函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内具有任意阶导数,则
f ( x ) f(x) f(x)在该邻域内能展开成泰勒级数的充要条件是 lim ⁡ n → ∞ R n ( x ) = 0 , x ∈ U ( x 0 ) \lim\limits_{n\to ∞}R_n(x)=0,x\in U(x_0) nlimRn(x)=0,xU(x0)
其中 R n ( x ) R_n(x) Rn(x) f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处的n阶泰勒公式的余项
推导:由于n阶泰勒多项式 p n ( x ) = ∑ k = 0 n 1 k ! f ( k ) ( x 0 ) ( x − x 0 ) k p_n(x)=\displaystyle\sum_{k=0}^{n}\dfrac{1}{k!}f^{(k)}(x_0)(x-x_0)^k pn(x)=k=0nk!1f(k)(x0)(xx0)k就是泰勒级数的前n+1项部分和,余项 R n ( x ) = f ( x ) − p n ( x ) R_n(x)=f(x)-p_n(x) Rn(x)=f(x)pn(x),根据级数收敛的定义,有
∑ n = 0 ∞ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n = f ( x )    ⟺    lim ⁡ n → ∞ p n ( x ) = f ( x )    ⟺    lim ⁡ n → ∞ [ f ( x ) − p n ( x ) ] = f ( x )    ⟺    lim ⁡ n → ∞ R n ( x ) = 0 \displaystyle\sum_{n=0}^{∞}\dfrac{1}{n!}f^{(n)}(x_0)(x-x_0)^n=f(x) \\ \iff \lim\limits_{n\to ∞}p_n(x)=f(x)\\ \iff \lim\limits_{n\to ∞}[f(x)-p_n(x)]=f(x)\\ \iff \lim\limits_{n\to ∞}R_n(x)=0 n=0n!1f(n)(x0)(xx0)n=f(x)nlimpn(x)=f(x)nlim[f(x)pn(x)]=f(x)nlimRn(x)=0
下面着重讨论 x = x 0 x=x_0 x=x0的情形,即麦克劳林展开
公式法将函数展为麦克劳林级数的步骤
(1)检验函数 f ( x ) f(x) f(x) x = 0 x=0 x=0处是否任意次可导,并求出 f ( n ) ( x ) , n = 0 , 1 , 2 , ⋯ f^{(n)}(x),n=0,1,2,\cdots f(n)(x),n=0,1,2,
(2)求出 f ( n ) ( 0 ) , n = 0 , 1 , 2 , ⋯ f^{(n)}(0),n=0,1,2,\cdots f(n)(0),n=0,1,2,
(3) 写出幂级数 ∑ n = 0 ∞ 1 n ! f ( n ) ( 0 ) x n \displaystyle\sum_{n=0}^{∞}\dfrac{1}{n!}f^{(n)}(0)x^n n=0n!1f(n)(0)xn,并求出收敛半径 R R R
(4)利用余项的表达式 R n ( x ) = 1 ( n + 1 ) ! f ( n + 1 ) ( θ x ) x n + 1 ( 0 < θ < 1 ) R_n(x)=\dfrac{1}{(n+1)!}f^{(n+1)}(θ x)x^{n+1} (0<θ<1) Rn(x)=(n+1)!1f(n+1)(θx)xn+1(0<θ<1),如果 lim ⁡ n → ∞ R n ( x ) = 0 , x ∈ ( − R , R ) \lim\limits_{n\to ∞}R_n(x)=0,x\in(-R,R) nlimRn(x)=0,x(R,R),即可写出麦克劳林展开式
间接法将函数展为麦克劳林级数:通过幂级数的运算(如四则运算、逐项求导、逐项积分)以及变量代换等
e x = ∑ n = 0 ∞ 1 n ! x n , x ∈ ( − ∞ , + ∞ ) e^x=\displaystyle\sum_{n=0}^{∞}\dfrac{1}{n!}x^n,x\in(-∞,+∞) ex=n=0n!1xn,x(,+)
sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 , x ∈ ( − ∞ , + ∞ ) \sin x=\displaystyle\sum_{n=0}^{∞}\dfrac{(-1)^n}{(2n+1)!}x^{2n+1},x\in(-∞,+∞) sinx=n=0(2n+1)!(1)nx2n+1,x(,+)
cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n , x ∈ ( − ∞ , + ∞ ) \cos x=\displaystyle\sum_{n=0}^{∞}\dfrac{(-1)^n}{(2n)!}x^{2n},x\in(-∞,+∞) cosx=n=0(2n)!(1)nx2n,x(,+)
1 1 + x = ∑ n = 0 ∞ ( − x ) n , x ∈ ( − 1 , 1 ) \dfrac{1}{1+x}=\displaystyle\sum_{n=0}^{∞}(-x)^n,x\in(-1,1) 1+x1=n=0(x)n,x(1,1)
ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 , x ∈ ( − 1 , 1 ] \ln (1+x)=\displaystyle\sum_{n=0}^{∞}\dfrac{(-1)^n}{n+1}x^{n+1},x\in(-1,1] ln(1+x)=n=0n+1(1)nxn+1,x(1,1]

傅里叶级数

三角级数(trigonometric series):形如 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) , T = 2 π \dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}(a_n\cos nx+b_n\sin nx),\boxed{T=2π} 2a0+n=1(ancosnx+bnsinnx),T=2π 的级数叫三角级数,其中 a 0 , a n , b n ( n = 1 , 2 , ⋯   ) a_0,a_n,b_n(n=1,2,\cdots) a0,an,bn(n=1,2,)是三角级数的系数

三角函数系
1 , cos ⁡ x , sin ⁡ x , cos ⁡ 2 x , sin ⁡ 2 x , ⋯   , cos ⁡ n x , sin ⁡ n x , ⋯ 1,\cos x,\sin x,\cos2x,\sin2x,\cdots,\cos nx,\sin nx,\cdots 1,cosx,sinx,cos2x,sin2x,,cosnx,sinnx,
正交性 (orthogonal) 对于三角函数系中任何不同的三角函数的乘积在 [ − π , π ] [-π,π] [π,π]上的积分为0,即
∫ − π π sin ⁡ n x d x = 0 ( n = 1 , 2 , 3 , ⋯   ) ∫ − π π cos ⁡ n x d x = 0 ( n = 1 , 2 , 3 , ⋯   ) ∫ − π π sin ⁡ k x cos ⁡ n x d x = 0 ( k , n = 1 , 2 , 3 , ⋯   ) ∫ − π π cos ⁡ k x cos ⁡ n x d x = 0 ( k , n = 1 , 2 , 3 , ⋯   , k ≠ n ) ∫ − π π sin ⁡ k x sin ⁡ n x d x = 0 ( k , n = 1 , 2 , 3 , ⋯   , k ≠ n ) \displaystyle\int_{-π}^{π}\sin nxdx=0\quad(n=1,2,3,\cdots) \\ \int_{-π}^{π}\cos nxdx=0\quad(n=1,2,3,\cdots) \\ \int_{-π}^{π}\sin kx\cos nxdx=0\quad(k,n=1,2,3,\cdots) \\ \int_{-π}^{π}\cos kx\cos nxdx=0\quad(k,n=1,2,3,\cdots,k\neq n) \\ \int_{-π}^{π}\sin kx\sin nxdx=0\quad(k,n=1,2,3,\cdots,k\neq n) ππsinnxdx=0(n=1,2,3,)ππcosnxdx=0(n=1,2,3,)ππsinkxcosnxdx=0(k,n=1,2,3,)ππcoskxcosnxdx=0(k,n=1,2,3,,k=n)ππsinkxsinnxdx=0(k,n=1,2,3,,k=n)

函数的傅里叶级数展开
假设周期为 2 π 2π 2π的函数 f ( x ) f(x) f(x)能展开成三角级数,即
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}(a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1(ancosnx+bnsinnx)
设右边三角级数在 [ − π , π ] [-π,π] [π,π]上可以逐项积分,利用三角级数的正交性可得
{ a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , ( n = 0 , 1 , 2 , 3 , ⋯   ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x , ( n = 1 , 2 , 3 , ⋯   ) \begin{cases} a_n=\dfrac{1}{π}\int_{-π}^{π}f(x)\cos nxdx ,(n=0,1,2,3,\cdots)\\ b_n=\dfrac{1}{π}\int_{-π}^{π}f(x)\sin nxdx ,(n=1,2,3,\cdots) \end{cases} an=π1ππf(x)cosnxdx,(n=0,1,2,3,)bn=π1ππf(x)sinnxdx,(n=1,2,3,)
这时所确定的 a 0 , a 1 , b 1 , ⋯ a_0,a_1,b_1,\cdots a0,a1,b1,为函数 f ( x ) f(x) f(x)傅里叶系数(Fourier coefficient).所得到的三角级数 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) \dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}(a_n\cos nx+b_n\sin nx) 2a0+n=1(ancosnx+bnsinnx)称为函数 f ( x ) f(x) f(x)傅里叶级数(Fourier series)

定理(Dirichlet 收敛定理)设 f ( x ) f(x) f(x)是周期为 2 π 2π 2π的周期函数,并满足狄利克莱(Dirichlet )条件:
(1)在一个周期区间内连续或只有有限个第一类间断点;
(2)在一个周期区间内只有有限个极值点,
f ( x ) f(x) f(x)的傅里叶级数收敛,且有
a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) = { f ( x ) x 为 连 续 点 f ( x − ) + f ( x + ) 2 x 为 间 断 点 \dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}(a_n\cos nx+b_n\sin nx)=\begin{cases} f(x) & x为连续点 \\ \dfrac{f(x^-)+f(x^+)}{2} & x为间断点 \end{cases} 2a0+n=1(ancosnx+bnsinnx)=f(x)2f(x)+f(x+)xx
其中 a n , b n a_n,b_n an,bn f ( x ) f(x) f(x)的傅里叶系数.

正弦级数和余弦级数
周期为 2 π 2π 2π的函数 f ( x ) f(x) f(x)
若为奇函数,则傅里叶展开式为只含有正弦项的正弦级数 f ( x ) = ∑ n = 1 ∞ a n sin ⁡ n x f(x)=\displaystyle\sum_{n=1}^{∞}a_n\sin nx f(x)=n=1ansinnx
若为偶函数,则傅里叶展开式为只含有余弦项的余弦级数 f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x f(x)=\dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}a_n\cos nx f(x)=2a0+n=1ancosnx

周期延拓 (periodic extension)
若函数 f ( x ) f(x) f(x)只在 [ − π , π ] [-π,π] [π,π]上有定义,并满足收敛条件,我们可在定义区间外补充函数的定义,使其成为周期为 2 π 2π 2π的周期函数 F ( x ) F(x) F(x),再将 F ( x ) F(x) F(x)展开成傅里叶级数,最后限制 x ∈ [ − π , π ] x\in[-π,π] x[π,π],此时 f ( x ) ≡ F ( x ) f(x)\equiv F(x) f(x)F(x)
用同样的方法也可为定义在 [ 0 , π ] [0,π] [0,π] [ − π , 0 ] [-π,0] [π,0]的函数奇(偶)延拓

吉布斯现象 (Gibbs phenomenon)
吉布斯现象
在间断点附近部分和函数的图形出现大幅度波动,波动的区间随着项数的增加越来越小,但幅度似乎是一样的!
傅里叶级数在函数间断点处的上述现象称为吉布斯现象(Gibbs phenomenon)

一般周期函数的傅里叶级数

  • 任意周期函数的傅里叶级数展开方法
    设函数 f ( x ) f(x) f(x) 周期为 2 l 2l 2l,令 x = l π t x=\frac{l}{π}t x=πlt
    则函数 F ( t ) = f ( x ) = f ( l π t ) F(t)=f(x)=f(\frac{l}{π}t) F(t)=f(x)=f(πlt) 周期为2π
    求得 F ( t ) F(t) F(t) 的傅里叶级数
    再将 t = π l x t=\frac{π}{l}x t=lπx 带入可得 f ( x ) f(x) f(x) 的傅里叶级数
    定理 设周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)满足收敛定理条件,则傅里叶展开式为 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) , x ∈ C f(x)=\dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}(a_n\cos \dfrac{nπ x}{l}+b_n\sin \dfrac{nπ x}{l}),x\in C f(x)=2a0+n=1(ancoslnπx+bnsinlnπx),xC
    其中
    { a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x , ( n = 0 , 1 , 2 , 3 , ⋯   ) b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x , ( n = 1 , 2 , 3 , ⋯   ) C = { x ∣ f ( x ) = 1 2 [ f ( x − ) + f ( x + ) ] } \begin{cases} a_n=\dfrac{1}{l}\int_{-l}^{l}f(x)\cos \dfrac{nπ x}{l}dx ,(n=0,1,2,3,\cdots)\\ b_n=\dfrac{1}{l}\int_{-l}^{l}f(x)\sin \dfrac{nπ x}{l}dx ,(n=1,2,3,\cdots) \end{cases} \\ C=\{x|f(x)=\frac{1}{2}[f(x^-)+f(x^+)]\} an=l1llf(x)coslnπxdx,(n=0,1,2,3,)bn=l1llf(x)sinlnπxdx,(n=1,2,3,)C={xf(x)=21[f(x)+f(x+)]}

  • 定义在任何有限区间上的函数的傅里叶级数展开方法
    f ( x ) , x ∈ [ a , b ] f(x),x\in[a,b] f(x),x[a,b] ,令 x = t + b + a 2 x=t+\frac{b+a}{2} x=t+2b+a
    F ( t ) = f ( x ) = f ( t + b + a 2 ) , t ∈ [ − b − a 2 , b − a 2 ] F(t)=f(x)=f(t+\frac{b+a}{2}),t\in[-\frac{b-a}{2},\frac{b-a}{2}] F(t)=f(x)=f(t+2b+a),t[2ba,2ba]
    做周期延拓,将 F ( t ) F(t) F(t) [ − b − a 2 , b − a 2 ] [-\frac{b-a}{2},\frac{b-a}{2}] [2ba,2ba] 展开成傅里叶级数
    t = x − b + a 2 t=x-\frac{b+a}{2} t=x2b+a 带入展开式
    最后的到 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的傅里叶展开

  • 傅里叶级数的复数形式
    设周期为 2 l 2l 2l的函数 f ( x ) f(x) f(x)的傅里叶级数为 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \dfrac{a_0}{2}+\displaystyle\sum_{n=1}^{∞}(a_n\cos \dfrac{nπ x}{l}+b_n\sin \dfrac{nπ x}{l}) 2a0+n=1(ancoslnπx+bnsinlnπx)
    利用欧拉公式 cos ⁡ t = 1 2 ( e i t + e − i t ) , sin ⁡ t = 1 2 i ( e i t − e − i t ) \cos t=\frac{1}{2}(e^{it}+e^{-it}),\sin t=\frac{1}{2i}(e^{it}-e^{-it}) cost=21(eit+eit),sint=2i1(eiteit)
    可得傅里叶级数的复数形式
    f ( x ) = ∑ n = − ∞ + ∞ c n e i n π x l f(x)=\displaystyle\sum_{n=-∞}^{+∞}c_ne^{i\frac{nπ x}{l}} f(x)=n=+cneilnπx
    其中 c n = 1 2 l ∫ − l l f ( x ) e − i n π x l d x , ( n = 0 , ± 1 , ± 2 , ⋯   ) c_n=\dfrac{1}{2l}\int_{-l}^{l}f(x)e^{-i\frac{nπ x}{l}}dx,(n=0,±1,±2,\cdots) cn=2l1llf(x)eilnπxdx,(n=0,±1,±2,)

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值