一:定义
环:+,-,*
R
上
加
法
群
的
幺
元
(
单
位
元
)
称
为
零
元
,
记
为
0
,
且
对
∀
a
∈
R
有
a
∗
0
=
0
∗
a
=
0
R上加法群的幺元(单位元)称为零元,记为0,且对\forall a\in R有 a*0=0*a=0
R上加法群的幺元(单位元)称为零元,记为0,且对∀a∈R有a∗0=0∗a=0
满
足
前
三
条
称
为
环
,
满
足
1
,
2
,
3
,
4
为
交
换
环
,
满
足
1
,
2
,
3
,
5
为
幺
环
,
1
,
2
,
3
,
6
为
无
零
因
子
环
,
1
−
6
为
整
环
,
1
−
7
为
域
整
数
环
是
整
环
:
对
于
整
数
的
普
通
加
法
和
乘
法
构
成
环
,
对
于
乘
法
满
足
交
换
律
,
乘
法
的
的
单
位
元
为
1
和
−
1
,
无
零
因
子
满足前三条称为环,满足1,2,3,4为交换环,满足1,2,3,5为幺环,\\1,2,3,6为无零因子环,1-6为整环,1-7为域\\ \ \ \ \ \ 整数环是整环:\\对于整数的普通加法和乘法构成环,对于乘法满足交换律,乘法的的单位元为1和-1,无零因子
满足前三条称为环,满足1,2,3,4为交换环,满足1,2,3,5为幺环,1,2,3,6为无零因子环,1−6为整环,1−7为域 整数环是整环:对于整数的普通加法和乘法构成环,对于乘法满足交换律,乘法的的单位元为1和−1,无零因子
< p ( A ) , ⊕ , ∩ > 是 环 < p ( A ) , ⊕ , ∪ > 不 是 环 , 因 为 ∪ 对 ⊕ 不 分 配 < p ( A ) , ∩ , ∪ > 不 是 环 , 因 为 < p ( A ) , ∩ > 不 是 群 <p(A),⊕,\cap>是环\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ <p(A),⊕,\cup>不是环,因为\cup 对 ⊕不分配 \ \ \ \ \ \ \ \ \ \\ <p(A),\cap,\cup>不是环,因为<p(A),\cap>不是群\\ <p(A),⊕,∩>是环 <p(A),⊕,∪>不是环,因为∪对⊕不分配 <p(A),∩,∪>不是环,因为<p(A),∩>不是群
域:
∗
设
<
R
,
+
,
∗
>
;
是
环
,
如
果
<
R
,
+
>
和
<
R
−
0
,
∗
>
都
是
交
换
群
(
“
0
”
为
<
R
,
+
>
的
幺
元
)
且
满
足
分
配
律
,
则
称
<
R
,
+
,
∗
>
是
域
。
∗
设
F
是
一
个
含
有
0
和
1
的
数
集
。
如
果
F
对
于
数
的
四
则
运
算
都
封
闭
,
那
么
称
系
统
(
F
;
+
,
-
,
×
,
÷
)
为
一
个
数
域
。
*设<R,+,* >;是环,如果<R,+>和<R-{0},*>都是交换群\\(“0”为<R,+>的幺元)且满足分配律,则称<R,+,*>是域。\\ *设F是一个含有0和1的数集。如果F对于数的四则运算都封闭,那么称系统(F;+,-,×,÷)为一个数域。
∗设<R,+,∗>;是环,如果<R,+>和<R−0,∗>都是交换群(“0”为<R,+>的幺元)且满足分配律,则称<R,+,∗>是域。∗设F是一个含有0和1的数集。如果F对于数的四则运算都封闭,那么称系统(F;+,-,×,÷)为一个数域。
无
零
因
子
:
环
中
∃
a
≠
0
,
b
≠
0
,
s
.
t
.
a
∗
b
=
0
<
p
(
A
)
,
⊕
,
∩
>
是
环
,
∅
是
零
元
,
A
=
{
a
,
b
}
,
满
足
{
a
}
∩
{
b
}
=
0
无零因子:环中\exists a\neq0,b\neq0,s.t. a*b=0\\ <p(A),⊕,\cap>是环,\varnothing 是零元,A=\{a,b\},满足\{a\} \cap \{b\}=0
无零因子:环中∃a=0,b=0,s.t.a∗b=0<p(A),⊕,∩>是环,∅是零元,A={a,b},满足{a}∩{b}=0
域 必 是 整 环 ; 有 限 整 环 必 是 域 有 限 整 环 必 是 域 的 证 明 ( 也 就 时 证 明 有 限 整 环 R 中 的 元 素 a i ≠ 0 可 逆 ) : 构 造 类 似 左 配 集 a i ∗ R , 则 a i ∗ R ⊂ R , 整 环 无 零 因 子 满 足 消 去 律 , 没 有 相 同 的 元 素 , 元 素 个 数 也 与 R 相 同 为 n 则 a i ∗ R = R ( 整 数 环 就 没 有 这 个 性 质 ) , e ∈ R = a i ∗ R , a i 可 逆 域必是整环;有限整环必是域\\ 有限整环必是域的证明(也就时证明有限整环R中的元素a_i\neq 0可逆):\\ 构造类似左配集a_i*R,则a_i*R\subset R,整环无零因子满足消去律,没有相同的元素,\color{red}\\元素个数也与R相同为n\color{black}则a_i*R= R(整数环就没有这个性质),\\ e\in R=a_i*R,a_i可逆\\ 域必是整环;有限整环必是域有限整环必是域的证明(也就时证明有限整环R中的元素ai=0可逆):构造类似左配集ai∗R,则ai∗R⊂R,整环无零因子满足消去律,没有相同的元素,元素个数也与R相同为n则ai∗R=R(整数环就没有这个性质),e∈R=ai∗R,ai可逆
二.结构部分
理想子环(简称为理想)ideal
与 群 的 正 规 子 群 需 要 “ 交 换 性 ” 成 立 不 同 的 是 理 想 需 要 “ 吸 收 性 ” , “ 乘 ” 运 算 后 吸 收 到 理 想 例 子 整 数 环 集 合 Z 中 的 m Z 部 分 , m 为 任 意 整 数 , 比 如 0 , 1 , 2 与群的正规子群需要“交换性”成立不同的是理想需要“吸收性”,“乘”运算后吸收到理想 \\\color{red}例子整数环集合Z中的 mZ部分,m为任意整数,比如0,1,2 与群的正规子群需要“交换性”成立不同的是理想需要“吸收性”,“乘”运算后吸收到理想例子整数环集合Z中的mZ部分,m为任意整数,比如0,1,2
环 中 合 同 关 系 设 R 是 一 个 环 , N 是 一 理 想 。 对 于 a , b ∈ R , 如 果 a − b = n ∈ N , 或 a = b t n , n ∈ N , 则 称 a 和 b 模 N 合 同 , 记 为 a = b ( m o d N ) 。 这 不 过 是 加 法 群 R 中 模 加 法 子 群 N 的 合 同 关 系 。 所 以 可 将 R 分 为 N 的 陪 集 , N 的 一 个 陪 集 叫 N 的 一 个 剩 余 类 。 若 a 是 R 的 任 意 元 素 , 则 包 含 a 的 剩 余 类 可 以 写 成 a + N 的 形 式 , a 和 b 在 同 一 剩 余 类 , 当 且 仅 当 a 和 b 模 N 合 同 环中合同关系\\ 设R是一个环, N是一理想。对于a,b∈R,如果a-b=n∈N,或a=btn, n∈N,\\ 则称a和b模N合同,记为a=b (mod N)。\\ 这不过是加法群R中模加法子群N的合同关系。所以可将R分为N的陪集,N的一个陪集叫N的一个剩余\\ 类。若a是R的任意元素,则包含a的剩余类可以写成a+N的形式,a和b在同一剩余类, 当且仅当a和b模N合同 环中合同关系设R是一个环,N是一理想。对于a,b∈R,如果a−b=n∈N,或a=btn,n∈N,则称a和b模N合同,记为a=b(modN)。这不过是加法群R中模加法子群N的合同关系。所以可将R分为N的陪集,N的一个陪集叫N的一个剩余类。若a是R的任意元素,则包含a的剩余类可以写成a+N的形式,a和b在同一剩余类,当且仅当a和b模N合同
同态=同构部分+核部分(对应过去是单位元)的定义仍然和加法十分类似
线性方程组解的结构
同 态 : σ : R → R ′ , ∀ a , b ∈ R , 有 σ ( a ∗ b ) = σ ( a ) ⋅ σ ( b ) 同 态 映 射 的 核 是 R 的 一 个 理 想 , 记 为 N ( a + b ) + N = ( a + N ) + ( b + N ) , a ∗ b + N = ( a + N ) ∗ ( b + N ) 同态:σ:R→R',∀a,b∈R,有σ(a*b)=σ(a)·σ(b)\\ 同态映射的核是R的一个理想,记为N\\ (a+b)+N=(a+N)+(b+N),a*b+N=(a+N)*(b+N) 同态:σ:R→R′,∀a,b∈R,有σ(a∗b)=σ(a)⋅σ(b)同态映射的核是R的一个理想,记为N(a+b)+N=(a+N)+(b+N),a∗b+N=(a+N)∗(b+N)
图
:
同
态
与
同
构
图:同态与同构
图:同态与同构