环与域

一:定义

环:+,-,*
R 上 加 法 群 的 幺 元 ( 单 位 元 ) 称 为 零 元 , 记 为 0 , 且 对 ∀ a ∈ R 有 a ∗ 0 = 0 ∗ a = 0 R上加法群的幺元(单位元)称为零元,记为0,且对\forall a\in R有 a*0=0*a=0 R0aRa0=0a=0

在这里插入图片描述
满 足 前 三 条 称 为 环 , 满 足 1 , 2 , 3 , 4 为 交 换 环 , 满 足 1 , 2 , 3 , 5 为 幺 环 , 1 , 2 , 3 , 6 为 无 零 因 子 环 , 1 − 6 为 整 环 , 1 − 7 为 域       整 数 环 是 整 环 : 对 于 整 数 的 普 通 加 法 和 乘 法 构 成 环 , 对 于 乘 法 满 足 交 换 律 , 乘 法 的 的 单 位 元 为 1 和 − 1 , 无 零 因 子 满足前三条称为环,满足1,2,3,4为交换环,满足1,2,3,5为幺环,\\1,2,3,6为无零因子环,1-6为整环,1-7为域\\ \ \ \ \ \ 整数环是整环:\\对于整数的普通加法和乘法构成环,对于乘法满足交换律,乘法的的单位元为1和-1,无零因子 123412351,2,3,6,16,17     11

< p ( A ) , ⊕ , ∩ > 是 环                                                  < p ( A ) , ⊕ , ∪ > 不 是 环 , 因 为 ∪ 对 ⊕ 不 分 配           < p ( A ) , ∩ , ∪ > 不 是 环 , 因 为 < p ( A ) , ∩ > 不 是 群 <p(A),⊕,\cap>是环\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ <p(A),⊕,\cup>不是环,因为\cup 对 ⊕不分配 \ \ \ \ \ \ \ \ \ \\ <p(A),\cap,\cup>不是环,因为<p(A),\cap>不是群\\ <p(A),,>                                                <p(A),,>,         <p(A),,>,<p(A),>

域:

∗ 设 < R , + , ∗ > ; 是 环 , 如 果 < R , + > 和 < R − 0 , ∗ > 都 是 交 换 群 ( “ 0 ” 为 < R , + > 的 幺 元 ) 且 满 足 分 配 律 , 则 称 < R , + , ∗ > 是 域 。 ∗ 设 F 是 一 个 含 有 0 和 1 的 数 集 。 如 果 F 对 于 数 的 四 则 运 算 都 封 闭 , 那 么 称 系 统 ( F ; + , - , × , ÷ ) 为 一 个 数 域 。 *设<R,+,* >;是环,如果<R,+>和<R-{0},*>都是交换群\\(“0”为<R,+>的幺元)且满足分配律,则称<R,+,*>是域。\\ *设F是一个含有0和1的数集。如果F对于数的四则运算都封闭,那么称系统(F;+,-,×,÷)为一个数域。 <R+><R+><R0,>0<R,+><R+>F01FF+×÷
无 零 因 子 : 环 中 ∃ a ≠ 0 , b ≠ 0 , s . t . a ∗ b = 0 < p ( A ) , ⊕ , ∩ > 是 环 , ∅ 是 零 元 , A = { a , b } , 满 足 { a } ∩ { b } = 0 无零因子:环中\exists a\neq0,b\neq0,s.t. a*b=0\\ <p(A),⊕,\cap>是环,\varnothing 是零元,A=\{a,b\},满足\{a\} \cap \{b\}=0 a=0,b=0,s.t.ab=0<p(A),,>A={a,b},{a}{b}=0
在这里插入图片描述

域 必 是 整 环 ; 有 限 整 环 必 是 域 有 限 整 环 必 是 域 的 证 明 ( 也 就 时 证 明 有 限 整 环 R 中 的 元 素 a i ≠ 0 可 逆 ) : 构 造 类 似 左 配 集 a i ∗ R , 则 a i ∗ R ⊂ R , 整 环 无 零 因 子 满 足 消 去 律 , 没 有 相 同 的 元 素 , 元 素 个 数 也 与 R 相 同 为 n 则 a i ∗ R = R ( 整 数 环 就 没 有 这 个 性 质 ) , e ∈ R = a i ∗ R , a i 可 逆 域必是整环;有限整环必是域\\ 有限整环必是域的证明(也就时证明有限整环R中的元素a_i\neq 0可逆):\\ 构造类似左配集a_i*R,则a_i*R\subset R,整环无零因子满足消去律,没有相同的元素,\color{red}\\元素个数也与R相同为n\color{black}则a_i*R= R(整数环就没有这个性质),\\ e\in R=a_i*R,a_i可逆\\ Rai=0aiR,aiRR,,RnaiR=R(),eR=aiR,ai


二.结构部分

理想子环(简称为理想)ideal

与 群 的 正 规 子 群 需 要 “ 交 换 性 ” 成 立 不 同 的 是 理 想 需 要 “ 吸 收 性 ” , “ 乘 ” 运 算 后 吸 收 到 理 想 例 子 整 数 环 集 合 Z 中 的 m Z 部 分 , m 为 任 意 整 数 , 比 如 0 , 1 , 2 与群的正规子群需要“交换性”成立不同的是理想需要“吸收性”,“乘”运算后吸收到理想 \\\color{red}例子整数环集合Z中的 mZ部分,m为任意整数,比如0,1,2 ZmZm012

环 中 合 同 关 系 设 R 是 一 个 环 , N 是 一 理 想 。 对 于 a , b ∈ R , 如 果 a − b = n ∈ N , 或 a = b t n , n ∈ N , 则 称 a 和 b 模 N 合 同 , 记 为 a = b ( m o d N ) 。 这 不 过 是 加 法 群 R 中 模 加 法 子 群 N 的 合 同 关 系 。 所 以 可 将 R 分 为 N 的 陪 集 , N 的 一 个 陪 集 叫 N 的 一 个 剩 余 类 。 若 a 是 R 的 任 意 元 素 , 则 包 含 a 的 剩 余 类 可 以 写 成 a + N 的 形 式 , a 和 b 在 同 一 剩 余 类 , 当 且 仅 当 a 和 b 模 N 合 同 环中合同关系\\ 设R是一个环, N是一理想。对于a,b∈R,如果a-b=n∈N,或a=btn, n∈N,\\ 则称a和b模N合同,记为a=b (mod N)。\\ 这不过是加法群R中模加法子群N的合同关系。所以可将R分为N的陪集,N的一个陪集叫N的一个剩余\\ 类。若a是R的任意元素,则包含a的剩余类可以写成a+N的形式,a和b在同一剩余类, 当且仅当a和b模N合同 RNa,bR,ab=nN,a=btn,nN,abNa=b(modN)RNRNNNaRaa+NababN

同态=同构部分+核部分(对应过去是单位元)的定义仍然和加法十分类似

线性方程组解的结构

同 态 : σ : R → R ′ , ∀ a , b ∈ R , 有 σ ( a ∗ b ) = σ ( a ) ⋅ σ ( b ) 同 态 映 射 的 核 是 R 的 一 个 理 想 , 记 为 N ( a + b ) + N = ( a + N ) + ( b + N ) , a ∗ b + N = ( a + N ) ∗ ( b + N ) 同态:σ:R→R',∀a,b∈R,有σ(a*b)=σ(a)·σ(b)\\ 同态映射的核是R的一个理想,记为N\\ (a+b)+N=(a+N)+(b+N),a*b+N=(a+N)*(b+N) σ:RRa,bRσ(ab)=σ(a)σ(b)R,N(a+b)+N=(a+N)+(b+N),ab+N=(a+N)(b+N)

在这里插入图片描述
图 : 同 态 与 同 构 图:同态与同构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值