AAAI 2024 | 通过有效知识转移增强广义少样本语义分割

论文信息

题目:Enhancing Generalized Few-Shot Semantic Segmentation via Effective Knowledge Transfer
通过有效知识转移增强广义少样本语义分割
作者:Xinyue Chen, Miaojing Shi, Zijian Zhou, Lianghua He, Sophia Tsoka
源码:https://github.com/HHHHedy/GFSS-EKT

论文创新点

  1. 新类原型调制模块(NPM):该模块通过交叉注意力机制捕捉基类和新类原型之间的相关性,重构新类原型,从而弥补新类样本的知识不足
  2. 新类分类器校准模块(NCC):该模块通过
### 关于2025年AAAI会议中的语义分割研究 目前,针对2025年AAAI会议上具体涉及语义分割的研究论文列表尚未公布。通常情况下,这类信息会在会议召开前几个月由官方渠道发布。不过,可以预期的是,在弱监督学习领域内,将会继续有新的进展被报道出来[^3]。 对于希望提前了解可能趋势的研究人员来说,可以从近年来该领域的热点方向做出预测: - **多模态数据融合**:随着传感器技术和计算能力的进步,利用RGB-D图像进行更精准的场景理解成为一个重要课题[^2]。 - **自适应模型训练**:为了减少对标记样本数量的需求,开发能够自动调整参数并从少量标注实例中学习有效特征表示的方法将是未来的一个重要方向[^1]。 此外,建议关注Awesome-Weakly-Supervised-Semantic-Segmentation-Papers这样的开源项目,它们会定期汇总最新的研究成果,并提供详细的分类和技术解析,有助于把握行业动态和发展脉络。 ```python import requests from bs4 import BeautifulSoup def fetch_conference_papers(conference_name, year): url = f"https://www.aaai.org/Conferences/conference.php?conf={conference_name.lower()}&year={year}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # This is a placeholder function to demonstrate how one might scrape the website. # Actual implementation would depend on the structure of the AAAI webpage and its terms of service. papers = fetch_conference_papers('AAAI', 2025) print(papers) ``` 此代码片段展示了如何通过网络爬虫获取特定年度学术会议上的论文摘要页面链接,但这仅作为概念验证用途;实际操作需遵循目标网站的服务条款以及版权规定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值