TCP标定-学习笔记

“四点法”实施方法:

在机器人的工作空间内放置一个固定点
通过控制机器人的姿态,使TCP与空间内的固定点重合
重复上述步骤3次,改变机器人的姿态 使 TCP 移动到同一点
以四次TCP点在世界坐标系中坐标相等为条件来建 立方程组并求解,从而实现工具坐标系位置的标定。

公式推导:

已知 T F A ^{F}_{T}A TFA 法兰到工具, F B A ^{B}_{F}A FBA 基坐标系到法兰, T B A ^{B}_{T}A TBA 基坐标系到工具。
存在 T B A = F B A ∗ T F A ^{B}_{T}A=^{B}_{F}A*^{F}_{T}A TBA=FBATFA → \quad \rightarrow

[ T B R T B T 0 1 ] = [ F B R F B T 0 1 ] ∗ [ T F R T F T 0 1 ] = [ F B R ∗ T F R F B R ∗ T F T + F B T 0 1 ] ( 1 ) \quad \begin{bmatrix} ^{B}_{T}R& ^{B}_{T}T\\ 0& 1\end{bmatrix}=\begin{bmatrix} ^{B}_{F}R& ^{B}_{F}T\\ 0& 1\end{bmatrix}*\begin{bmatrix} ^{F}_{T}R& ^{F}_{T}T\\ 0& 1\end{bmatrix}=\begin{bmatrix} ^{B}_{F}R*^{F}_{T}R & ^{B}_{F}R*^{F}_{T}T+^{B}_{F}T\\ 0& 1\end{bmatrix} \quad \quad(1) [TBR0TBT1]=[FBR0FBT1][TFR0TFT1]=[FBRTFR0FBRTFT+FBT1](1)

所以 T B T = F B R ∗ T F T + F B T ( 2 ) ^{B}_{T}T=^{B}_{F}R*^{F}_{T}T+^{B}_{F}T \quad \quad (2) TBT=FBRTFT+FBT(2)

如果对工具坐标建系使其坐标系轴的方向与法兰坐标系轴方向均一致, T F R = I ^{F}_{T}R=I TFR=I,那么现在还需要求 T F T ^{F}_{T}T TFT

对于每个姿态(i)下,示教机器人末端触碰同一个点都存在 T B T = F B R i ∗ T F T + F B T i ( 3 ) ^{B}_{T}T=^{B}_{F}R_{i}*^{F}_{T}T+^{B}_{F}T_{i} \quad \quad (3) TBT=FBRiTFT+FBTi(3)
第一个姿态下(i=1): T B T = F B R 1 ∗ T F T + F B T 1 ( a ) ^{B}_{T}T=^{B}_{F}R_{1}*^{F}_{T}T+^{B}_{F}T_{1} \quad \quad(a) TBT=FBR1TFT+FBT1(a)
第二个姿态下(i=2): T B T = F B R 2 ∗ T F T + F B T 2 ( b ) ^{B}_{T}T=^{B}_{F}R_{2}*^{F}_{T}T+^{B}_{F}T_{2} \quad \quad(b) TBT=FBR2TFT+FBT2(b)
第三个姿态下(i=3): T B T = F B R 3 ∗ T F T + F B T 3 ( c ) ^{B}_{T}T=^{B}_{F}R_{3}*^{F}_{T}T+^{B}_{F}T_{3} \quad \quad(c) TBT=FBR3TFT+FBT3(c)
第四个姿态下(i=4): T B T = F B R 4 ∗ T F T + F B T 4 ( d ) ^{B}_{T}T=^{B}_{F}R_{4}*^{F}_{T}T+^{B}_{F}T_{4} \quad \quad(d) TBT=FBR4TFT+FBT4(d)

由式(a)(b)(c)(d)得:
(a)=(b ), ( F B R 1 − F B R 2 ) ∗ T F T = F B T 2 − F B T 1 ( a ′ ) (^{B}_{F}R_{1}-^{B}_{F}R_{2})*^{F}_{T}T=^{B}_{F}T_{2} -^{B}_{F}T_{1} \quad \quad(a^{'}) (FBR1FBR2)TFT=FBT2FBT1(a)
(a)=(c ), ( F B R 1 − F B R 3 ) ∗ T F T = F B T 3 − F B T 1 ( b ′ ) (^{B}_{F}R_{1}-^{B}_{F}R_{3})*^{F}_{T}T=^{B}_{F}T_{3} -^{B}_{F}T_{1} \quad \quad(b^{'}) (FBR1FBR3)TFT=FBT3FBT1(b)
(a)=(d ), ( F B R 1 − F B R 4 ) ∗ T F T = F B T 4 − F B T 1 ( c ′ ) (^{B}_{F}R_{1}-^{B}_{F}R_{4})*^{F}_{T}T=^{B}_{F}T_{4} -^{B}_{F}T_{1} \quad \quad(c^{'}) (FBR1FBR4)TFT=FBT4FBT1(c)

联立 ( a ′ ) (a^{'}) (a) ( b ′ ) (b^{'}) (b) ( b ′ ) (b^{'}) (b)得:
[ F B R 1 − F B R 2 F B R 1 − F B R 3 F B R 1 − F B R 4 ] ∗ T F T = [ F B T 2 − F B T 1 F B T 3 − F B T 1 F B T 4 − F B T 1 ] \begin{bmatrix} ^{B}_{F}R_{1}- ^{B}_{F}R_{2}\\^{B}_{F}R_{1}- ^{B}_{F}R_{3}\\^{B}_{F}R_{1}- ^{B}_{F}R_{4}\end{bmatrix}*^{F}_{T}T=\begin{bmatrix} ^{B}_{F}T_{2}-^{B}_{F}T_{1}\\^{B}_{F}T_{3}-^{B}_{F}T_{1}\\^{B}_{F}T_{4}-^{B}_{F}T_{1}\end{bmatrix} FBR1FBR2FBR1FBR3FBR1FBR4 TFT= FBT2FBT1FBT3FBT1FBT4FBT1
最终:
T F T = [ F B R 1 − F B R 2 F B R 1 − F B R 3 F B R 1 − F B R 4 ] − 1 [ F B T 2 − F B T 1 F B T 3 − F B T 1 F B T 4 − F B T 1 ] ^{F}_{T}T=\begin{bmatrix} ^{B}_{F}R_{1}- ^{B}_{F}R_{2}\\^{B}_{F}R_{1}- ^{B}_{F}R_{3}\\^{B}_{F}R_{1}- ^{B}_{F}R_{4}\end{bmatrix}^{-1}\begin{bmatrix} ^{B}_{F}T_{2}-^{B}_{F}T_{1}\\^{B}_{F}T_{3}-^{B}_{F}T_{1}\\^{B}_{F}T_{4}-^{B}_{F}T_{1}\end{bmatrix} TFT= FBR1FBR2FBR1FBR3FBR1FBR4 1 FBT2FBT1FBT3FBT1FBT4FBT1
标定的TCP矩阵Res求解结束:
R e s = [ T F R T F T 0 1 ] Res=\begin{bmatrix} ^{F}_{T}R& ^{F}_{T}T\\ 0& 1\end{bmatrix} Res=[TFR0TFT1]
理论上姿态越多求解的 T F T ^{F}_{T}T TFT越准确。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值