机器人工具坐标系标定

物体在坐标系中的位置和方向是姿态。

 

4轴机器人标定TCP(两点法或三点法):

四轴机器人的TCP只有XY,没有其他四个轴。

两点法:根据两点的(X,Y,R)计算。根据两点的xy偏移与角度的偏移确定一个扇形的原点。

三点法:根据三点的(X,Y)计算。三点确定圆心。

 

6轴机器人标定TCP(四点法):TCP用来标定工具旋转中心位置

示教四个位置P1 P2 P3 P4。每个位置的工具的Z轴角度间隔在45-90之间且不在同一个平面。最终TCP为(X,Y,Z,0,0,0)

 

6轴机器人标定带TCF(6点法-X/Z):TCF是用来标定工具旋转中心位置加上工具的进给方向(工具的姿态标定)

6轴带TCF的是在6轴TCP的基础上添加两个点。

P5点沿工具的+X方向移动最好移动100mm以上。

P6点沿工具的+Z方向移动最好移动100mm以上。(工具升降的方向)

保持P4、P5、P6的姿态不变,P5以P4为基点沿着作业平台的+X方向移动,P6以P4为基点沿着作业平台的+Z方向移动

 

### UR机器人工具坐标系标定代码示例 对于UR机器人工具坐标系(TCP)标定,通常涉及通过一系列已知位置的姿态来计算TCP相对于末端执行器的位置和方向。此过程可以借助Python脚本以及ROS (Robot Operating System) 来实现。 下面是一个基于Python的简单示例,用于演示如何使用六个不同的姿态点来进行TCP标定: ```python import numpy as np from ur_robot_driver.srv import * import rospy def tcp_calibration(points): """ 计算工具中心点(TCP)相对于法兰盘原点的位置向量。 参数: points -- 包含6个不同位姿下的笛卡尔坐标列表 [[x1, y1, z1], ... , [x6, y6, z6]] 和对应的关节角度 [[j1_1, j2_1,..., j6_1], ..., [j1_6, j2_6,..., j6_6]]. 返回值: TCP_offset -- 工具中心点偏移量[x,y,z,a,b,c]. """ service_name = '/ur_hardware_interface/set_tcp' set_tcp_srv = rospy.ServiceProxy(service_name, SetTcp) try: response = set_tcp_srv(tcp=[0., 0., 0., 0., 0., 0.]) # Reset to default before calibration A = [] B = [] for point in points: cartesian_position = point[:3] joint_angles = point[3:] # Add your code here to move the robot arm according to `joint_angles` and record actual tool position measured_tool_pos = get_measured_tool_pose() # Function that returns current tool pose from sensor data or FK calculation A.append(cartesian_position) B.append(measured_tool_pos) P = np.array(A).T @ np.linalg.inv(np.array(B).T) tx, ty, tz = P.diagonal() rx, ry, rz = rotation_matrix_to_euler(P / P.diagonal()) TCP_offset = [tx, ty, tz, rx, ry, rz] result = set_tcp_srv(tcp=TCP_offset) return TCP_offset except Exception as e: print(f"Service call failed with error {e}") def rotation_matrix_to_euler(R): """Converts a rotation matrix into Euler angles.""" sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = sy < 1e-6 if not singular : x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else : x = math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return np.array([x, y, z]) def get_measured_tool_pose(): """Placeholder function representing how one would obtain real-time measurements of the tool's pose""" pass if __name__ == "__main__": rospy.init_node('tcp_calibrator') sample_points = [ [-0.4,-0.2,0.5, -90,-90,0], ... ] # Insert six different poses consisting of both Cartesian positions and corresponding joint configurations. calibrated_TCP = tcp_calibration(sample_points) print(calibrated_TCP) ``` 上述代码展示了如何定义一个函数`tcc_calibration()`,该函数接收一组由六个不同位姿组成的输入数据集,并返回所估计出来的TCP偏移量[^1]。注意,在实际应用中,获取测量到的工具姿势(`get_measured_tool_pose`)部分应该替换为从传感器读取真实世界的数据或者正运动学计算的结果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值