tensor操作篇

1. contiguous()
作用:强制拷贝一份tensor,让它的布局和从头创建的一模一样,但是两个tensor完全没有联系
使用场景:断开输入张量与输出张量的内存共享联系
2. zero_()
作用:张量所有值置零
3. variable()
使用:
variable(tensor)
作用:将张量转换为变量,用于梯度计算,更新参数。 形象点说:tensor是硬币的话,那Variable就是钱包,它记录着里面的钱的多少,和钱的流向。
使用场景:参与loss计算的tensor
4.data()
使用:
tensor = variable.data().cuda()
作用:将变量(Variable)变为tensor,将requires_grad设置为Flase
使用场景:loss计算中不参与梯度运算的部分数据
5. max( )
使用:
tensor.max(dim)
作用:按维度dim 返回最大值,并且返回索引。
6. gt(index)
作用:比index大的数据位置
未完待续---
本文详细讲解了TensorFlow中的关键操作,包括contiguous()用于重新布局内存、zero_()清零元素、variable()创建可训练变量、data()转换为不可训练数据、max()求最大值及gt()比较操作。此外,还介绍了常见数据类型转换和变量在梯度计算中的角色。
963

被折叠的 条评论
为什么被折叠?



