量化教程3——量化校准方法

本文介绍了模型量化中的校准方法,包括Max、Histogram和Entropy校准。Max校准基于最大绝对值,Histogram校准考虑数据分布,Entropy校准通过最小化信息损失。文章探讨了饱和量化与不饱和量化的权衡,并对比了三种校准方法的量化误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是校准
校准是为模型权重和激活选择边界的过程。为了简单起见,这里只描述了对称范围的校准(工业界一般对称量化即可满足需求),如对称量化所需。这里考虑三种校准方法:

  • Max:使用校准期间的最大绝对值;
  • Histogram:将范围设置为校准期间看到的绝对值分布的百分位。
  • Entropy:使用 KL 散度来最小化原始浮点值和量化比特表示的值之间的信息损失。

二、Max校准
Max校准主要是用校准期间的最大绝对值;
校准过程如下所示:
1、对输入求取绝对值;
2、算出绝对值的最大值;
3、以Tensorrt的 int8 对称量化为例,这里如果想得到Scale就要除以127。
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值