一、什么是校准
校准是为模型权重和激活选择边界的过程。为了简单起见,这里只描述了对称范围的校准(工业界一般对称量化即可满足需求),如对称量化所需。这里考虑三种校准方法:
- Max:使用校准期间的最大绝对值;
- Histogram:将范围设置为校准期间看到的绝对值分布的百分位。
- Entropy:使用 KL 散度来最小化原始浮点值和量化比特表示的值之间的信息损失。
二、Max校准
Max校准主要是用校准期间的最大绝对值;
校准过程如下所示:
1、对输入求取绝对值;
2、算出绝对值的最大值;
3、以Tensorrt的 int8 对称量化为例,这里如果想得到Scale就要除以127。