1,特征值与特征向量
1.1,特征值与特征向量的概念
设
,如果存在常数
和非零的
维列向量
,使得:
则称
为
的特征值,
为
的对应于
的特征向量。
- 特征向量为非零向量。
- 特征向量与特征值是成对出现的,一个特征值可对应多个特征向量,反之不然。
将上式移项:
有非零解
这是
个未知数
个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
。
,称
为
的特征矩阵。
- 称
为矩阵
的特征多项式。
- 称
为矩阵
的特征方程。
的特征值就是
的特征方程的根。
阶方阵
在复数范围内一定有
个特征值。
1.2,特征值和特征向量求法,
(1)求
的
个根
,它们即为
的全部特征值。
(2)求解齐次线性方程组
,其非零解向量即为
的对应特征值
的特征向量。
【例1】设
,求
的特征值与特征向量。
【解】因为
的特征多项式为:
所以
的特征值为:
当
时,解方程组
。由:
得基础解析:
所以对应
的全部特征向量为
,其中
不同时为0。
当
时,解方程组
。由:
得基础解析:
,故对应
的全部特征向量为
。
【例2】设
,求
的特征值与特征向量。
因为
的特征多项式为:
所以
的特征值为:
得基础解析:
,故对应
的全部特征向量为
。
结论:特征值的线性无关的特征向量个数不超过特征值(特征方程的根)的重数。
1.3,特征值与特征向量性质
代数重数和几何重数
将
表示成不互相同的一次因子方幂乘积的型式:
则称
为
的特征值
的代数重数(简称重数)。
的特征值
的特征空间:
,称
为
的特征值
的几何重数,表示属于
的特征值
的线性无关的特征向量的个数。
设
是
的
重特征值,对应
有
个线性无关的特征向量,则
。
矩阵多项式
设
是
的多项式:
,对于
,规定:
,称
为矩阵
的多项式。
设
,
的
个特征值为:
对应的特征向量为
,又设
为一多项式,则:
即
的特征值为
,对应的特征向量仍为
。特别的,若
,则所有
。
线性无关
设
是方阵
的互不相同的特征值,
是分别与之对应的特征向量,则
线性无关。
设
是方阵
的互不相同的特征值,
是对应特征值
的线性无关的特征向量,则向量组
也线性无关。
设
阶方阵
的特征值为
,则:
的特征值仍为
,而
的特征值为
- 设
,则0是
的特征值
设
,称
为
的迹(trace),记为
,即
。
设
,则
。
PS:
不一定等于
,但是它们的对角线元素之和一定相等。
2,相似对角化
2.1,相似的概念与性质
给定复数域
上的
维线性空间
,考虑
上的线性变换
,给定
的两组基
两组基之间的过渡矩阵记为
,可得
进而
进一步
设
,若存在可逆矩阵
使得
则称
与
相似,记
。
设
,则
- 自反性:
- 对称性:
- 传递性:
设
,
,
是一多项式,则:
,即
与
有相同的特征多项式,从而有相同的特征值。
PS:上述四个结论都是矩阵相似的必要而非充分条件。
【例3】
证明(3)
存在可逆矩阵
使得
,因此
2.2,相似对角化的判定
对角矩阵是较简单的矩阵之一,无论计算它的乘积、幂、逆矩阵、特征值都比较方便。
设
,若
与一对角矩阵相似,则称
可对角化。
可对角化
当且仅当存在
,使得
。
![]()
,令
,
可逆。
![]()
![]()
![]()
是
的
个特征值,
是对应的特征向量,
线性无关。
![]()
有
个线性无关的特征向量。
即:设
,则
可对角化的充要条件是
有
个线性无关的特征向量。
推论1:设
是
的所有互异的特征值,其重数分别为
。若
的几何重数分别为
,则
可对角化。(
对应
有
个线性无关的特征向量)
推论2:设
,如果
有
个不同的特征值,则
可对角化。
PS1:矩阵
可相似对角化
![]()
的每个相异特征值的几何重数等于代数重数
![]()
的相异特征值的几何重数之和等于
。
PS2:当
存在某个特征值,使得其几何重数小于代数重数时,则矩阵不能对角化,比如:
。
【例4】判断下列矩阵是否可对角化,如果是,求相似变换矩阵
和相应的对角矩阵。
对于单重特征值
,几何重数=代数重数=1。
因此只需要考虑多重特征值的情形:
因此
,故对应
重特征值
的特征空间的维数为
,即特征值
的几何重数<代数重数,因此矩阵
不可对角化。
因为
,所以
的
个特征值分别为
由于
有
个互异的特征值,故
可对角化。
对应的特征方程为
可得
所对应的一个特征向量为
类似可求得
所对应的特征向量分别为:
令
,则有
2.3,相似对角化的应用
【例5】
,求
可求得对应
的一个特征向量分别为:
令
,
于是
【例6】求解
,其中
,
由于
可求得对应
的一个特征向量为:
令
,则有
进而
故Fibonacci数列的通项
【例7】求解一阶常系数微分方程组
分析问题的解是
其中
为对应于
的特征向量,
为任意常数。
把微分方程组改写为矩阵形式:
其中
令
其一般解为:
再由
,求得原微分方程组的一般解为:
3,Jordan标准型
3.1,Jordan标准型的概念与性质
Jordan标准型是为解决不能相似对角化的问题而引入的。
形如
的矩阵称为特征值
对应的
阶的
块。有若干个
块构成的分块对角矩阵:
,称为
矩阵。
矩阵与对角矩阵的差异:仅在于它的上对角线(与对角线平行的上面的一个对角线)元素是
或
,它是一个特殊的上三角矩阵。
块本身就是一个
矩阵。
- 当
时,
块
不可对角化。
- 对角矩阵是一个
矩阵,它的每个
块都是
阶的
![]()
的初等因子都是
次的。
矩阵中不同
块对应的特征值可能相同。
块还有下三角的形式。
,分别是
阶的
矩阵。
是一个6阶的
矩阵。
定理:设
,则
与一个
矩阵
相似,即存在可逆矩阵
,使得:
且这个
矩阵
除
块的排列次序外由
唯一确定,此时也称
为矩阵
的
分解。
- 矩阵不一定可以相似对角化,但一定可以与
矩阵相似。
- 因为相似矩阵有相同的特征值,所以
标准型的对角线元素
就是矩阵的特征值。
- 在
标准型中,不同
块的对角线元素可能相同,因此特征值
的代数重数
对应的某个
块的阶数。
3.2,Jordan标准型求法
特征向量法:设
![]()
(1)如果
是
的单重特征值,则
对应于
阶
块
;
(2)如果
是
的
重特征值,若
,则对应
就有
个以
为对角元的
块,且这些
块的阶数之和等于
;
(3)由
的所有相异特征值对应的
块构成
矩阵即为
的标准型。
优点:计算简单,并且由已经求得的特征向量可以求得相似变换矩阵。
缺点:当矩阵
的某个特征值重数较高时,对应的
块阶数可能无法确定。
【例8】求下列矩阵的
标准型
已求得
的特征值为
,对应
重特征值
只有一个线性无关的特征向量,故
的
标准型为:
已求得
的特征值为
,对应的线性无关特征向量为
故
的标准型为:
初等变换法:设
,其中
都是
的多项式,则称
为
矩阵或多项式矩阵。对
矩阵
进行的如下三种变换称为
矩阵的初等行(列)变换:
- 交换
的两行(列):
或
的某一行(列)乘以一个非零常数
:
或
的某一行(列)同时乘以多项式
加到另外一行(列):
或
![]()
注:对
的矩阵同样可以定义秩的概念,且在初等变换下
矩阵的秩不变。
相抵(等价关系):设
,
都是
矩阵,且
经过初等变换后变为
,则称矩阵
与
相抵。
引理:设
是非零矩阵,则矩阵
必须相抵与这样一个
矩阵
,其中
,且
可以整除
中的任意元素。
标准形:设
,则
经过一系列初等变换可化为如下
标准形
其中,
是首
多项式(即最高项系数为
的多项式),
,且
。 其中
为矩阵
的不变因子。
标准形的两个特点:
- 设对角线元素从上到下次数逐次升高。
- 保持整除性。
标准形的实现途径:初等变换+多项式除法。
【例9】求下列矩阵的
标准形
设
:
(1)对矩阵
实施初等变换变成
标准形
,求出
的不变因子:
。
(2)将
的次数
的不变因子
分解为一次因式方幂的乘积,这些一次因子的方幂称为
的初等因子:
。
(3)写出每个初等因子
对应的
块
,
,由这些
块构成
的
标准形:
【例10】求矩阵的
的
标准形
因此
的不变因子为:
从而
的初等因子为:
对应的
块为:
故矩阵
的
标准形为:
【问题】 为什么能用初等变换法求矩阵的
标准形?
(1)
对应的
阶的
块:
![]()
初等因子为:
(2)设方阵
为分块对角矩阵
,则
的初等因子全体就是
的全部初等因子。
(3)两个同阶方阵
和
相似
![]()
与
相抵
![]()
与
有相同的初等因子或不变因子。
行列式因子法:
设
,
的所有
阶子式的首
最大公因式
称为
的
阶行列式因子,
。
行列式因子与不变因子:设
,
是
的
阶行列式因子,
是
的不变因子,
,则
设
- 求出矩阵
的
个行列式因子:
。
- 由公式
,求出
的不变因子。
- 求出
的初等因子和
标准形。
【例11】求矩阵
的
标准形
的
阶行列式因子为
的
阶子式:
的
阶行列式因子为
的
阶行列式因子为
因此
的不变因子为:
故
的
标准形:
【例12】求矩阵
的
标准形
的三阶子式如下:
因为
整除每个
阶子式,所以
,从而
由于
,因此
的不变因子为:
从而
的初等因子为:
对应的
块为:
故矩阵
的
标准形为:
3.3,Jordan标准型的应用
【例13】求矩阵
的
标准形及所使用的相似变换矩阵
可求得
的
标准形为:
设相似变换矩阵
,由
,即
得:
,即
解线性方程组
,即
所以,
【例14】求矩阵
的
标准形及所使用的相似变换矩阵
求得
的
标准形为:
设相似变换矩阵
,则由
,即
得:
因此
是对应特征值
的李你哥哥线性无关的特征向量,而对应特征值
的广义特征向量
由求解非齐次线性方程组
得到:
可以求得特征值
所对应的两个线性无关的特征向量为:
可取
,则
无解。
为了是的该方程有解,需要重新选择
,设
因此,当
时
的解向量
,故所有的相似变换矩阵为:
标准形的幂
对于
阶
块
,有
其中
对于
矩阵
,有
设
,则由
分解定理知存在可逆矩阵
使得
,即
从而
【例15】设
,求
可求得
,
故
【例16】求解以及诶线性常系数微分方程组
把微分方程改写为矩阵形式
其中
,
,
令
,这里
从而
进一步可求得
代入第
个方程得
进一步求解
由
求得原微分方程组的一般解为