SFM(Structure from Motion)和NeRF(Neural Radiance Fields)都是计算机视觉领域中的重要算法,用于不同的任务和应用。
-
SFM(Structure from Motion):
SFM是一种从图像序列中重建三维场景的技术。它通过分析相机在不同视角下捕获的图像来推断场景的三维结构和摄像机的运动。SFM算法可以用来创建三维模型、测量相机轨迹和估计深度信息。它在计算机图形、增强现实、虚拟现实等领域具有广泛的应用。典型的SFM算法包括Bundle Adjustment、Structure from Motion(SfM)和Visual SLAM等。 -
NeRF(Neural Radiance Fields):
NeRF是一种基于神经网络的算法,用于从图像中重建逼真的三维场景模型。它通过训练一个神经网络来建模每个空间点的颜色和密度,然后可以使用这个模型生成新的视图和逼真的渲染效果。NeRF的目标是捕获场景的精细细节和光照效果,使重建的三维模型更加真实。NeRF在计算机图形、虚拟现实、游戏等领域有着潜力革命性的应用。