Android Studio SDK无法勾选安装的解决方案

在安装AndroidStudio时遇到经典错误UnabletoaccessAndroidSDKadd-onlist,尝试了设置代理、修改配置文件、分配权限、网络修复等方法无效。最终通过特定博客中提到的方法成功解决问题,但具体解决步骤未在摘要中详述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

1、在初次安装好Android Studio后,会启动AS,出现经典的Unable to access Android SDK add-on list报错,点Cancel即可。网上的解决方法分为两种:(1)设置Proxy为教育网(2)在as的目录下修改文件启动时不检测。实际上根本不用管它。

在这里插入图片描述
2、显示正在下载SDK,进度条顶多到这里就消失了。

在这里插入图片描述

然后进入Install Type,选择Custom。

在这里插入图片描述

再选择JDK Location,这里选AS默认的JDK,不需要换成jdk1.8。

在这里插入图片描述

3、跳到最重要的SDK Components Setup界面,这里无法勾选任何一个框,无论是否换路径。

在这里插入图片描述
4、这时候翻阅了无数的博客和官网资料,有位博主总结了以下问题,大家可以对照着一个个试验。
在这里插入图片描述

解决方法
  • 分配盘符权限,无效。

在这里插入图片描述

  • 下载电脑管家,网络修复,无效。

在这里插入图片描述

  • 关闭所有网络的防火墙,无效。

  • 换手机热点,无效。

  • 卸载并重新安装android studio,无效。

  • 更换安装目录,无效。

最后按照这位大佬的方法,解决了问题!

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

参考文章:
https://blog.csdn.net/sc_liuliye/article/details/122554163
https://blog.csdn.net/weixin_42674696/article/details/115801706
https://blog.csdn.net/weixin_45756789/article/details/124079746

### 关于RK3576开发板在智能售货冰柜中的应用 RK3576是一款基于Rockchip八核64位AIoT处理器的开发板,采用了先进的制程工艺和大小核架构(4×A72+4×A53),具备高性能和低功耗的特点[^2]。该开发板不仅能够提供强大的计算能力,还具有良好的扩展性和灵活性。 #### 编码性能与成本优势 相较于前代产品RK3399,RK3576弥补了其全方位短板,在编码性能方面可以追平高端型号RK3588,支持高达4K@60fps视频处理;而成本仅为后者的一半,这使得RK3576成为性价比极高的选择[^3]。 #### 接口设计 对于智能售货冰柜的应用场景而言,RK3576提供了丰富的接口选项,其中包括一个标准的40-pin插座,可用于连接各种外设设备,如传感器、显示屏和其他控制模块等。这种灵活的设计有助于简化硬件集成过程并加速项目部署[^4]。 #### 智能售货冰柜应用场景分析 针对智能售货冰柜的具体需求,RK3576凭借其出色的图像识别能力和边缘计算特性,非常适合应用于此类终端设备中。通过内置的人工智能算法,可实现商品自动识别、库存管理以及用户交互等功能优化用户体验的同时提高运营效率。 ```python # 示例代码展示如何利用Python库进行基本的商品检测逻辑模拟 import cv2 as cv from PIL import Image def detect_products(image_path): img = cv.imread(image_path) gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 假定已经训练好的模型加载进来 model = load_pretrained_model() predictions = model.predict(gray_img) return predictions if __name__ == "__main__": result = detect_products('sample_product_image.jpg') print(f'Detected products: {result}') ``` 此段伪代码展示了使用OpenCV读取图片文件,并将其转换为灰度图以便后续处理。接着调用了预训练的目标检测模型来进行预测操作最后输出可能存在的物品列表作为演示用途。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

振华OPPO

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值