向量空间中的:线性相关与线性无关

本文介绍了线性代数中的核心概念——线性相关和线性无关。线性相关指的是向量组中某个向量可以通过其他向量的线性组合表示,而线性无关则意味着所有向量无法通过较少数量的向量来表达。文中详细阐述了线性无关向量组形成的空间维度增加的意义,并探讨了基、秩和极大线性无关组等概念,强调它们在确定向量空间结构和维数中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成空间:以二维空间为例,给定两个非零向量。
其中两个非零向量系数a,b任意取值组合,就可以得到整个二维空间,除非两向量共线。
一个向量固定,另一个向量自由变化,其线性组合可得到一条直线。
在这里插入图片描述

一、线性相关

若给定多个向量,移除其中一就是部分而不减少生成空间,就是线性相关
若生成空间的维数比给定向量的个数少,就说明这些给定的向量是线性相关
比如图所示,a(2,3)+b(-2,-3)就是线性相关的,因为就算把b(-2,-3)这个向量删除,a(2,3)得到的生成空间依然是那一条线。也就是给了我2个向量,但是生成的却是个1维空间
在这里插入图片描述
代数定义:若向量组中某个向量可以由其余的向量线性表处(即通过线性组合计算得到),那么这个向量组称为线性相关的。
比如(1,2),(2,3),(4,7)这个向量组就是线性相关的
因为2(1,2)+(2,3) = (4,7)

在这里插入图片描述

二、线性无关

若所有向量都给生成空间增加了维度,就是线性无关
在这里插入图片描述

向量空间就是通过n个不线性相关的向量通过线性组合生成出来的就是向量空间

2.1 基

用来生成这个空间的向量,就叫做这个空间的一组,比如下图的两个向量
在这里插入图片描述
n维空间中任意n个线性无关的向量都可以是空间的一组基。基组生成了该线性空间。
默认都用自然基:
在这里插入图片描述

2.2 秩

几何定义:矩阵的秩:线性变换后空间的维数

原始定义:向量组中线性无关的向量的个数。即向量组的极大线性无关组的向量个数。因为线性无关的向量才能生成向量空间。

比如这个题,给了我们5个向量,结果发现就3个向量是线性无关的,那么这5个向量只能生成一个3维空间。矩阵的秩=3
在这里插入图片描述

2.3 极大线性无关组

还是这个题,给了我们5个向量,结果发现就a1、a2、a4这3个向量是线性无关的。但是把另外两个向量a3或a5任意一个加进去都会出现线性相关。那a1,a2,a4这三个本就无关的向量就叫做这个向量组的极大线性无关组
在这里插入图片描述
意思就是,给我一个向量组,我发现有某些向量是线性无关的,但是这个线性无关的组中,加入任何一个其他向量都会出现线性相关,那么我们就说原来无关的那个向量组就叫做极大线性无关组

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果子当夜宵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值