【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

前言

在这里插入图片描述
文章提供了一个简单而有效的提出的双层路由注意力实现它利用稀疏性来节省计算和内存,因此它在良好的性能和高计算效率方面都享有优势,特别是在密集预测任务中。本文详细介绍了如何在yolov8中添加BiLevelRoutingAttention注意力机制模块,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

1.BiLevelRoutingAttention简介

论文发表时间:2023.03.15

github地址:https://github.com/rayleizhu/BiFormer
paper地址:https://arxiv.org/pdf/2303.08810.pdf

在这里插入图片描述

摘要:作为视觉变换器的核心构建模块,注意力是捕获远程依赖性的强大工具。然而,这种强大功能是有代价的:由于需要计算所有空间位置之间的成对令牌交互,它会带来巨大的计算负担和沉重的内存占用。一系列工作试图通过引入手工制作的和内容不可知的稀疏性到注意力中来减轻这个问题,例如限制注意力操作在局部窗口、轴向条纹或扩展窗口内部。与这些方法相反,我们提出了一种新颖的动态稀疏注意力通过双层路由来实现更灵活的计算分配与内容感知。具体来说,对于一个查询,不相关的键值对首先在粗略的区域级别被过滤掉,然后在剩余候选区域(即路由区域)的并集中应用细粒度令牌到令牌的注意力。我们提供了一个简单而有效的提出的双层路由注意力实现它利用稀疏性来节省计算和内存,同时只涉及GPU友好的密集矩阵乘法。基于提出的双层路由注意力构建的一个新的通用视觉变换器,名为BiFormer,随后被提出。由于BiFormer以一种查询自适应的方式只关注小部分相关令牌,不受其他不相关令牌的分心,因此它在良好的性能和高计算效率方面都享有优势,特别是在密集预测任务中。在图像分类、目标检测和语义分割等多个计算机视觉任务中的实证结果验证了我们设计的有效性。

论文主要亮点如下:

  • 为原始注意力机制引入了一种新颖的双层次路由机制,这使得在查询自适应的方式下可以实现内容感知的稀疏模式。

  • 将双层次路由注意力作为基本构件,我们提出了一个通用的视觉变换器命名为BiFormer。

  • 在各种计算机视觉任务上的实验结果,包括图像分类、目标检测和语义分割,显示所提出的BiFormer在类似模型大小下,实现了比基线模型显著更好的性能。

1.1 网络结构

在这里插入图片描述

1.2 稀疏性应用方式

在这里插入图片描述

1.3 性能对比

在这里插入图片描述

2.YOLOv8添加注意力机制

替换位置与替换后网络结构示意

添加位置
在这里插入图片描述

替换后的YOLOv8网络结构如下:
在这里插入图片描述

定义注意力机制类

ultralytics/nn/modules/block.py中添加如下代码块,并定义BiLevelRoutingAttention类:
在这里插入图片描述

并在ultralytics/nn/modules/block.py中最上方添加如下代码:
在这里插入图片描述

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:
在这里插入图片描述
ultralytics/nn/tasks.py 上方导入BiLevelRoutingAttention类名,并在parse_model解析函数中添加如下代码:
在这里插入图片描述

        elif m in [BiLevelRoutingAttention]:
            c2 = ch[f]
            args = [c2, *args[0:]]

在这里插入图片描述

ultralytics/cfg/models/v8文件夹下新建yolov8-BiLevelRoutingAttention.yaml文件,内容如下:

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, BiLevelRoutingAttention, []] # 16

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-BiLevelRoutingAttention.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train11/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')

# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

### 更换YOLOv8主干网络的操作指南 #### 修改配置文件 为了更换YOLOv8的主干网络,首先需要修改模型配置文件。通常情况下,这些配置保存在一个`.yaml`文件中。对于不同的主干网络,如EfficientViT、SCINet以及FasterNet,对应的配置文件会有所不同。 针对EfficientViT作为新的主干网,在配置文件内指定该架构的具体参数设置[^1]: ```yaml backbone: type: EfficientViT params: ... ``` 而当采用SCINet来增强YOLOv8时,则需调整相应部分以适应新引入组件的需求[^2]: ```yaml backbone: name: 'scinet' pretrained: True/False # 是否使用预训练权重 ... ``` 最后,如果选择的是FasterNet为主干网络的话,那么就要依据官方给出的例子去编辑相应的YAML文档[^3]: ```yaml # yolov8-FasterNet.yaml ... backbone: - [conv, [64, k=7, s=2]] - [maxpool, []] - [faster_net_block, ... ] ... ``` #### 编写Python脚本调用自定义模型 完成上述更改之后,下一步就是通过编写一段简单的Python程序来进行实际测试。这里展示了一个基本框架,它能够加载经过修改后的YOLOv8版本并启动训练过程: ```python from ultralytics import YOLO if __name__ == '__main__': model = YOLO('path_to_custom_backbone_yaml') # 加载预训练权重(可选) model.load('pretrained_weights_path') # 开始训练 model.train( data='dataset_config_file', epochs=num_epochs, batch=batch_size ) ``` 在这个例子中,`'path_to_custom_backbone_yaml'`应该被替换成指向已更新好的配置文件路径;同样地,其他变量也需要按照实际情况设定好合适的值。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值