《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
《------正文------》
前言
论文发表时间:2022.08.07
github地址:https://github.com/LabSAINT/SPD-Conv
paper地址:https://arxiv.org/pdf/2208.03641v1.pdf
文章提出了一个新的CNN构建模块称为SPD-Conv,用来替换每个步长卷转层和每个池化层(从而完全消除它们)
。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成。本文详细介绍了如何在yolov8中引入SPD-Conv
,助力助力低分辨率与小目标检测,并且使用修改后的yolov8进行目标检测训练与推理
。本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。
本文改进使用的ultralytics版本为:ultralytics == 8.0.227
目录
1.SPD-Conv简介
摘要:卷积神经网络(CNN)在许多计算机视觉任务中取得了显著的成功,例如图像分类和目标检测。然而,它们的性能在图像分辨率低或对象较小的更艰难任务中会急剧下降。在本文中,我们指出这一问题源于现有CNN架构中一个有缺陷但常见的设计,即使用步长卷积和/或池化层,这导致了细微信息的丢失和较少有效特征表示的学习。为此,我们提出了一个新的CNN构建模块称为
SPD-Conv,用来替换每个步长卷转层和每个池化层(从而完全消除它们)
。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,可以应用于大部分(如果不是全部的话)CNN架构。我们在两个最有代表性的计算机视觉任务下解释了这种新设计:目标检测和图像分类。然后,我们通过将SPD-Conv应用于YOLOv5和ResNet创建了新的CNN架构,并通过实验证明,我们的方法显著优于最先进的深度学习模型,尤其是在图像分辨率低和对象较小的更艰难任务上。
论文主要亮点如下:
- 我们发现了现有CNN架构中一个有缺陷但常见的设计,并提出了一种新的构建模块,称为SPD-Conv,以取代旧的设计。SPD-Conv在不丢失可学习信息的情况下下采样特征图,彻底抛弃了如今广泛使用的带步长的卷积和池化操作。
- SPD-Conv代表一种通用且统一的方法,可以很容易地应用于大部分(如果不是全部的话)基于深度学习的计算机视觉任务。
- 使用两个最具代表性的计算机视觉任务,目标检测和图像分类,来评估SPD-Conv的性能。具体来说,我们构建了YOLOv5-SPD、ResNet18-SPD和ResNet50-SPD,并在COCO-2017、Tiny ImageNet和CIFAR-10数据集上与几种最先进的深度学习模型进行了比较。结果显示在AP和top-1精度上都有显著的性能提升,特别是在小物体和低分辨率图像上。
1.1 网络结构
1.2 性能对比
2.YOLOv8添加SPD-Conv
YOLOv8网络结构前后对比
定义FasterNet相关类
在ultralytics/nn/modules/block.py
中添加如下代码块,为space_to_depth
模块代码:
并在ultralytics/nn/modules/block.py
中最上方添加如下代码:
修改指定文件
在ultralytics/nn/modules/__init__.py
文件中的添加如下代码:
在 ultralytics/nn/tasks.py
上方导入相应类名,并在parse_model
解析函数中添加如下代码:
elif m is space_to_depth:
c2 = 4 * ch[f]
在ultralytics/cfg/models/v8
文件夹下新建yolov8-FasterNet.yaml
文件,内容如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 1]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 1]] # 1-P2/4
- [-1, 1, space_to_depth, [1]] # 2 -P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 1]] # 4-P3/8
- [-1, 1, space_to_depth, [1]]
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 1]] # 7-P4/16
- [-1, 1, space_to_depth, [1]]
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 1]] # 10-P5/32
- [-1, 1, space_to_depth, [1]]
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 13
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 16
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 19 (P3/8-small)
- [-1, 1, Conv, [256, 3, 1]]
- [-1, 1, space_to_depth, [1]]
- [[-1, 16], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 23 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 1]]
- [-1, 1, space_to_depth, [1]]
- [[-1, 13], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
- [ [ 19, 23, 27 ], 1, Detect, [ nc ] ] # Detect(P3, P4, P5)
3.加载配置文件并训练
加载yolov8-BiLevelRoutingAttention.yaml
配置文件,并运行train.py
训练代码:
#coding:utf-8
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('ultralytics/cfg/models/v8/yolov8-SPD-Conv.yaml')
model.load('yolov8n.pt') # loading pretrain weights
model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)
注意观察,打印出的网络结构是否正常修改,如下图所示:
4.模型推理
模型训练完成后,我们使用训练好的模型对图片进行检测:
#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"
# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)
【源码免费获取】
为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:
结束语
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
觉得不错的小伙伴,感谢点赞、关注加收藏哦!