【实战】YOLO11进行锻炼监测:俯卧撑,引体向上,深蹲统统搞定【附源码】

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

在这里插入图片描述

由于技术的进步,检测跟踪身体健康状况变得比以往任何时候都更容易。监测练习,如俯卧撑,引体向上,深蹲和其他常规锻炼可以显着提高你的形式,保持一致性,并减少受伤的风险。通过Ultralytics YOLO 11,锻炼监控的精度和效率达到了一个新的水平。

本文将介绍如何使用YOLO11实现对锻炼动作的监控,如常见的俯卧撑,引体向上,深蹲等。

通过分析你的锻炼动作,监控可以让你评估性能,识别形式上的错误,并确保稳步前进。这对于优化训练和防止受伤至关重要。例如,它可以跟踪您执行的俯卧撑或下蹲的数量,同时评估您的姿势以提高您的技术。

在这里插入图片描述

img

YOLO 11支持哪些锻炼?

借助YOLO 11的尖端计算机视觉技术,跟踪和分析训练变得非常简单。它可以无缝地检测和监控各种运动,提供宝贵的见解,以完善您的健身计划。

例如,YOLO 11可以轻松跟踪俯卧撑、引体向上和深蹲等体重练习。这些基本动作对增强力量和耐力至关重要,它们会被监测,以评估您的形式并准确计算重复次数。利用YOLO 11,您可以将训练提升到一个新的水平,帮助您更有效地实现健身目标。

如何使用YOLO11监控训练

使用YOLO 11监控锻炼非常简单。您只需在CLI中使用一个命令即可轻松跟踪练习。

**注意:**在开始之前,请确保系统上安装了最新版本的ultralytics软件包。

#Install the ultralytics package
# pip install ultralytics

# Run a workout example
yolo solutions workout show=True

# Pass a source video
yolo solutions workout source="path/to/video/file.mp4"

# Use keypoints for pushups
yolo solutions workout kpts=[6, 8, 10]

俯卧撑监测与计数

提供的Python脚本可以让您轻松监控俯卧撑练习。这是令人难以置信的强大,跟踪你的代表计数的真是次数,同时也计算你的身体部位之间的角度精确的形式分析。

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, 
                                       cv2.CAP_PROP_FRAME_HEIGHT, 
                                       cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("workouts.avi", 
                               cv2.VideoWriter_fourcc(*"mp4v"), 
                               fps, (w, h))

# Init AIGym
gym = solutions.AIGym(
    show=True,  # Display the frame
    kpts=[6, 8, 10],  # keypoints index for monitoring specific exercise
    model="yolo11n-pose.pt",  # Path to the YOLO11 pose estimation model
    # line_width=2, # Adjust the line width for bounding boxes
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break
    im0 = gym.monitor(im0)
    video_writer.write(im0)

cv2.destroyAllWindows()
video_writer.release()

img

深蹲检测与计数

深蹲是最受欢迎的运动之一,因为它们同时针对多个肌肉群,提高力量,平衡和整体健康。它们是锻炼下半身力量和提高运动成绩的主要手段。

您可以使用YOLO 11使用提供的代码来监控您的深蹲,从而实现实时重复计数和精确的形式分析。

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH,
                                       cv2.CAP_PROP_FRAME_HEIGHT,
                                       cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("workouts.avi",
                               cv2.VideoWriter_fourcc(*"mp4v"),
                               fps, (w, h))

# Init AIGym
gym = solutions.AIGym(
    show=True,  # Display the frame
    kpts=[5, 11, 13],  # keypoints index for monitoring specific exercise
    model="yolo11n-pose.pt",  # Path to the YOLO11 pose estimation model
    # line_width=2, # Adjust the line width for bounding boxes
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break
    im0 = gym.monitor(im0)
    video_writer.write(im0)

cv2.destroyAllWindows()
video_writer.release()

在这里插入图片描述

锻炼监控的好处

  • 监控你的进步:跟踪让你知道你已经完成的代表的数量,以及你是否及时变得更好。
  • **保持正确的姿势:**这将确保你正确地做运动,从而减少受伤的机会。
  • **实时反馈:**YOLO11提供即时反馈,让您的锻炼更有效。

结论

使用YOLO 11进行锻炼监控是将您的健身计划提升到一个新水平的好方法。无论是引体向上、俯卧撑、深蹲还是腹肌练习,它都能提供精确、实时的跟踪,确保每个代表都发挥作用。


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

基于yolo11-pose关键点检测算法实现多种运动计数系统(如常见仰卧起坐、引体向上俯卧撑深蹲)+GUI界面+模型+使用说明(支持树莓派运行).zip 【功能介绍】 支持俯卧撑深蹲引体向上、仰卧起坐等运动动作的自动计数 采用模块化设计,方便后续维护和升级 可在Windows和Linux系统上运行 开发语言: Python GUI框架: PySide6 代码编辑器: VS Code 或pycharm 界面设计工具: PySide6Designer, PySide6-UIC 项目可部署到树莓派上运行,里面含有使用说明文档,代码结构清晰易懂,易运行。 【备注】 1、该资源内项目代码百分百可运行,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我! 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,请勿第三方代下,否则博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值