《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
引言
由于技术的进步,检测跟踪身体健康状况变得比以往任何时候都更容易。监测练习,如俯卧撑,引体向上,深蹲和其他常规锻炼可以显着提高你的形式,保持一致性,并减少受伤的风险。通过Ultralytics YOLO 11,锻炼监控的精度和效率达到了一个新的水平。
本文将介绍如何使用YOLO11实现对锻炼动作的监控,如常见的俯卧撑,引体向上,深蹲等。
通过分析你的锻炼动作,监控可以让你评估性能,识别形式上的错误,并确保稳步前进。这对于优化训练和防止受伤至关重要。例如,它可以跟踪您执行的俯卧撑或下蹲的数量,同时评估您的姿势以提高您的技术。
YOLO 11支持哪些锻炼?
借助YOLO 11的尖端计算机视觉技术,跟踪和分析训练变得非常简单。它可以无缝地检测和监控各种运动,提供宝贵的见解,以完善您的健身计划。
例如,YOLO 11可以轻松跟踪俯卧撑、引体向上和深蹲等体重练习。这些基本动作对增强力量和耐力至关重要,它们会被监测,以评估您的形式并准确计算重复次数。利用YOLO 11,您可以将训练提升到一个新的水平,帮助您更有效地实现健身目标。
如何使用YOLO11监控训练
使用YOLO 11监控锻炼非常简单。您只需在CLI中使用一个命令即可轻松跟踪练习。
**注意:**在开始之前,请确保系统上安装了最新版本的ultralytics
软件包。
#Install the ultralytics package
# pip install ultralytics
# Run a workout example
yolo solutions workout show=True
# Pass a source video
yolo solutions workout source="path/to/video/file.mp4"
# Use keypoints for pushups
yolo solutions workout kpts=[6, 8, 10]
俯卧撑监测与计数
提供的Python脚本可以让您轻松监控俯卧撑练习。这是令人难以置信的强大,跟踪你的代表计数的真是次数,同时也计算你的身体部位之间的角度精确的形式分析。
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH,
cv2.CAP_PROP_FRAME_HEIGHT,
cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("workouts.avi",
cv2.VideoWriter_fourcc(*"mp4v"),
fps, (w, h))
# Init AIGym
gym = solutions.AIGym(
show=True, # Display the frame
kpts=[6, 8, 10], # keypoints index for monitoring specific exercise
model="yolo11n-pose.pt", # Path to the YOLO11 pose estimation model
# line_width=2, # Adjust the line width for bounding boxes
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
im0 = gym.monitor(im0)
video_writer.write(im0)
cv2.destroyAllWindows()
video_writer.release()
深蹲检测与计数
深蹲是最受欢迎的运动之一,因为它们同时针对多个肌肉群,提高力量,平衡和整体健康。它们是锻炼下半身力量和提高运动成绩的主要手段。
您可以使用YOLO 11使用提供的代码来监控您的深蹲,从而实现实时重复计数和精确的形式分析。
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH,
cv2.CAP_PROP_FRAME_HEIGHT,
cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("workouts.avi",
cv2.VideoWriter_fourcc(*"mp4v"),
fps, (w, h))
# Init AIGym
gym = solutions.AIGym(
show=True, # Display the frame
kpts=[5, 11, 13], # keypoints index for monitoring specific exercise
model="yolo11n-pose.pt", # Path to the YOLO11 pose estimation model
# line_width=2, # Adjust the line width for bounding boxes
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
im0 = gym.monitor(im0)
video_writer.write(im0)
cv2.destroyAllWindows()
video_writer.release()
锻炼监控的好处
- 监控你的进步:跟踪让你知道你已经完成的代表的数量,以及你是否及时变得更好。
- **保持正确的姿势:**这将确保你正确地做运动,从而减少受伤的机会。
- **实时反馈:**YOLO11提供即时反馈,让您的锻炼更有效。
结论
使用YOLO 11进行锻炼监控是将您的健身计划提升到一个新水平的好方法。无论是引体向上、俯卧撑、深蹲还是腹肌练习,它都能提供精确、实时的跟踪,确保每个代表都发挥作用。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!