一、本文介绍
本文记录的是利用GsConv
优化YOLOv9
的颈部网络。深度可分离卷积(DSC)
在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC)
,而GsConv
采用混合策略,使DSC
的输出通过打乱特征更接近SC
,从而优化模型的性能。本文利用GsConv+Slim Neck
改进YOLOv9
的颈部网络,使其在提升特征表示能力的同时降低计算成本和内存占用。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进