一、本文介绍
本文记录的是基于StarNet的YOLOv8轻量化改进方法研究。StarNet
设计简洁,没有复杂的设计和精细调整的超参数,仅是一个 4 阶段的分层架构。并且其中星操作能够在低维空间计算的同时考虑极高维的特征这一特性,进而提高模型精度。本文在替换骨干网络中配置了原论文中的starnet_s050
、starnet_s100
、starnet_s150
、starnet_s1
、starnet_s2
、starnet_s3
和starnet_s4
七种模型,以满足不同的需求。
模型 | 参数量 | 计算量 | 推理速度 |
---|---|---|---|
YOLOv8m | 25.8M | 79.1GFLOPs | 4.7ms |
Improved | 14.4M | 41.2GFLOPs | 4.3ms |
专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进