YOLOv12改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)

一、本文介绍

本文记录的是改进YOLOv12的损失函数,将其替换成Focaler-IoU。现有研究通过利用边界框之间的几何关系来提高回归性能,但忽略了困难样本和简单样本分布对边界框回归的影响。不同检测任务中困难样本和简单样本的分布不同,对于简单样本占主导的检测任务,关注简单样本的边界框回归有助于提高检测性能;对于困难样本比例较高的检测任务,需要关注困难样本的边界框回归。Focaler-IoU能够通过关注不同的回归样本,提高检测器在不同检测任务中的性能。

实现的Focaler-IoU包括:Focaler-DIoUFocaler-GIoUFocaler-CIoU


专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### Focaler-IoU 损失函数的作用及应用场景 Focaler-IoU 损失函数是一种结合了焦点损失(Focal Loss)和交并比(IoU)损失的思想设计的优化方法,其主要目的是改善目标检测模型在处理不同规模的目标以及类别不平衡问题上的表现。 #### 1. **Focaler-IoU 的核心功能** Focaler-IoU 将焦点损失的功能引入到 IoU 类型的损失计算中,从而能够更好地应对以下挑战: - 对于小目标检测,传统的 IoU 损失可能无法充分反映预测框与真实框之间的差异。通过融合焦点损失的概念,可以增强对低质量匹配的关注度[^1]。 - 针对前景和背景样本分布极度不平衡的情况,Focaler-IoU 能够降低简单负样本的影响权重,使得网络更加专注于困难正样本的学习过程[^2]。 #### 2. **数学表达形式** 假设 \( p_t \) 表示预测概率,\( y_{ij}^{pred} \) 和 \( y_{ij}^{true} \) 分别表示预测边界框和真实边界框,则 focaler-iou 可定义如下: \[ FL(p_t) = -(1-p_t)^{\gamma}\log(p_t) \] 其中,\( FL \) 是焦点损失项;而 IoU 成分则可以通过下述方式实现: \[ L_{iou} = 1 - IOU(y_{ij}^{pred}, y_{ij}^{true}) \] 最终的综合损失可写成两者的加权组合: ```python def focal_iou_loss(pred_boxes, true_boxes, gamma=2.0, alpha=0.25): ious = calculate_iou(pred_boxes, true_boxes) pt = torch.clamp(ious, min=epsilon, max=1-epsilon) # 计算焦点损失部分 focal_term = (1 - pt)**gamma * (-torch.log(pt)) # 加入alpha调节因子 loss = alpha * focal_term return loss.mean() ``` 此代码片段展示了如何将焦点损失融入 IoU 损失之中[^3]。 #### 3. **适用场景分析** Focaler-IoU 特别适合应用于那些存在显著尺度变化或者类别分布极不平衡的任务环境当中,比如: - 自动驾驶领域内的行人、车辆识别; - 安防监控视频流中的微小物体捕捉; - 医疗影像诊断过程中病灶区域定位等高精度需求场合。 这些应用都需要精确控制误检率的同时提高召回能力,因此采用此类定制化损失函数显得尤为重要。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值