DX_五角星计算

基础知识:
正五角星的角尖是36度,拐度是108度。

分析:

可以把五角星分成五个相同的等腰直接三角和一个正五边形,如图片。

多边形内角和计算公式:(n - 2)×180°(n大于等于3且n为整数)。

根据公式,可以算出五边形内角和为(5-2)×180°=540°,所以五边形每个角的度数为:540°÷5=108°。

已知正五边形每个角都是108° ,则等腰直角三角形的下面的两个相等的角为72°。

三角形内角和为180°,则三角形上面的那个角=180°-72°-72°=36°

所以,五角星的五个顶角各是36°,拐角度数=180-(180-36)÷2=108°。

在这里插入图片描述
在这里插入图片描述

五角星计算 ,确定坐标点:
在这里插入图片描述
说明:
① 坐标原点o(0,0)为坐标原点
② 五角星的长轴为R = |oa|,长度已知
③ 五角星的短轴为r = |oa1|
④ 弧度制为rad = π/180 rad

五角星分为以下几个步骤:
① 求五角星外五个顶点的坐标(a,b, c, d, e)
由图可知:∠fbg = 18°,∠aoa’ = ∠a’ob = 36°, ∠aob = 72°
由极坐标公式:
x=rcos(θ),
x=rsin(θ),

可以得到外五角星的五个坐标:
((R * cos(90°+ k * 72°+ yDegree)), (R * sin(90°+ k * 72°+ yDegree)))其中k = 0、1、2、3、4, yDegree为oa与y轴的夹角(如下图),默认为0。
在这里插入图片描述
但画图时会由中心点O(x, y)确定五角星外五个顶点的坐标,经过坐标变换为:

(x -(R * cos(90°+ k * 72°+ yDegree)), y - (R * sin(90°+ k * 72°+yDegree)))

②求解五角星内五顶点坐标(a1, b1, c1,d1, e1)

由图可知:r * cos(36°) = |fo| = R * sin(18°)

所以:r = R * sin(18°) / cos(36°);

根据步骤①相同方法得到五角星内五顶点坐标:
((R* cos(90°+ 36°+ k * 72°+yDegree)), (R * sin(90°+ 36°+ k * 72°+yDegree)))其中k = 0、1、2、3、4, yDegree为oa与y轴的夹角,默认为0。

但画图时会由中心点O(x, y)确定五角星外五个顶点的坐标,经过坐标变换为:
(x -(R * cos(90°+ 36°+ k * 72°+yDegree)), y - (R * sin(90°+ 36°+ k* 72°+ yDegree)))

原文链接:计算机图形学-五角星的画法

<think>好的,用户想了解如何使用OpenMV顺时针识别五角星拐点的坐标。我需要先理清这个问题的关键点和可能的解决步骤。 首先,用户提到了“顺时针识别五角星拐点坐标”。这里的拐点应该指的是五角星的五个顶点。顺时针可能指的是按顺时针顺序排列这些顶点的坐标。OpenMV主要用于图像处理,所以应该涉及摄像头捕捉图像、图像处理、形状识别以及坐标提取这几个步骤。 接下来,我需要考虑OpenMV的库函数支持哪些图像处理功能。OpenMV有find_blobs函数用于颜色识别,还有find_lines和find_line_segments用于找线。不过五角星可能更适合用轮廓检测或者多边形近似的方法来处理。可能用到find_contours函数,然后通过多边形近似来识别顶点。 然后,需要确定如何按顺时针顺序排列这些顶点。这涉及到对检测到的点进行排序。通常,多边形顶点的顺序可能不是固定的,需要根据位置或角度来排序。可能需要计算每个顶点相对于中心点的极角,然后按顺时针方向排序。不过要注意,极角排序通常是逆时针的,所以可能需要调整顺序或者取反角度来实现顺时针排序。 另外,坐标系的转换也需要考虑。OpenMV的图像坐标系原点在左上角,y轴向下,这可能和用户期望的坐标系不同。是否需要转换坐标系的表示方式?或者用户只需要相对坐标?这点可能需要进一步确认,但通常处理时可能需要将坐标转换到用户所需的坐标系。 可能的步骤包括: 1. 图像采集:使用OpenMV摄像头拍摄图像。 2. 预处理:二值化、滤波等,突出五角星的轮廓。 3. 轮廓检测:使用find_contours找到五角星的轮廓。 4. 多边形近似:对轮廓进行多边形近似,检测顶点。 5. 顶点排序:将检测到的顶点按顺时针顺序排列。 6. 坐标输出:获取每个顶点的坐标并输出。 关于多边形近似,五角星有10个顶点(外5个,内5个),但可能用户指的是外部的五个顶点。这时候可能需要调整近似的阈值,或者先找到外轮廓再进行近似。可能需要设置合适的阈值,让多边形近似后只剩下5个顶点。 顶点排序方面,计算每个顶点相对于中心点的极角,然后按顺时针排序。例如,计算每个点的角度,然后排序。但要注意,极角通常从x轴正方向逆时针增加,所以如果要顺时针排序,可能需要按角度降序排列,或者调整角度的计算方式。 此外,可能需要验证检测到的顶点数量是否为5个,否则可能需要调整图像处理的参数,比如二值化的阈值、多边形近似的阈值等。 可能遇到的问题包括:光照影响轮廓检测、五角星形状不规则导致顶点检测不准确、顶点排序错误等。需要建议用户确保良好的光照条件,适当调节对比度,或者使用形态学操作来优化图像。 最后,代码示例应该包括图像捕获、灰度转换、二值化、找轮廓、多边形近似、计算中心点、排序顶点、输出坐标等步骤。需要检查每个步骤的OpenMV函数是否正确使用,比如是否使用正确的参数来寻找轮廓,多边形近似的参数是否合适,以及排序是否正确。 总结一下,我需要提供一个分步骤的解决方案,涵盖图像处理、轮廓检测、顶点排序,并附上代码示例和可能的注意事项,帮助用户实现目标。</think>以下是使用OpenMV顺时针识别五角星拐点坐标的分步解决方案: --- ### **步骤1:图像采集与预处理** 1. **拍摄图像** 使用OpenMV摄像头拍摄包含五角星的图像,确保五角星轮廓清晰、背景简洁。 2. **二值化处理** 将图像转换为灰度图,并通过阈值分割提取五角星区域: ```python img = sensor.snapshot() img.gray() # 转换为灰度图 img.binary([(阈值范围)]) # 例如 [(0, 100)] ``` --- ### **步骤2:轮廓检测** 使用`find_contours`函数检测五角星轮廓: ```python contours = img.find_contours(threshold=2000, roi=(0,0,img.width(),img.height())) for contour in contours: # 筛选面积最大的轮廓(假设五角星是画面中最大物体) if contour.area() > 1000: # 对轮廓进行多边形近似 polygon = contour.approx(5, epsilon=0.05) # 关键参数:顶点数=5 ``` --- ### **步骤3:顶点坐标提取** 1. **获取多边形顶点** 若多边形近似成功(顶点数=5),提取顶点坐标: ```python if len(polygon) == 5: points = [(p.x(), p.y()) for p in polygon] ``` 2. **计算中心点** 用于后续排序: ```python center_x = sum(p[0] for p in points) / 5 center_y = sum(p[1] for p in points) / 5 ``` --- ### **步骤4:顺时针排序顶点** 1. **计算极角** 以中心点为原点,计算各顶点极角(弧度): ```python import math angles = [] for (x, y) in points: dx = x - center_x dy = center_y - y # OpenMV坐标系y轴向下,需取反 angle = math.atan2(dy, dx) angles.append(angle) ``` 2. **按顺时针排序** 调整极角后排序: ```python sorted_points = [p for _, p in sorted(zip(angles, points), reverse=True)] ``` --- ### **步骤5:输出坐标** 将排序后的坐标输出: ```python for i, (x, y) in enumerate(sorted_points): print("顶点{}坐标: ({}, {})".format(i+1, x, y)) ``` --- ### **完整代码示例** ```python import sensor, image, math sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time=2000) while True: img = sensor.snapshot().gray() img.binary([(0, 100)]) # 根据实际调整阈值 contours = img.find_contours(threshold=2000) for contour in contours: if contour.area() > 1000: polygon = contour.approx(5, epsilon=0.05) if len(polygon) == 5: points = [(p.x(), p.y()) for p in polygon] center_x = sum(p[0] for p in points) / 5 center_y = sum(p[1] for p in points) / 5 # 计算极角并排序 angles = [] for (x, y) in points: dx = x - center_x dy = center_y - y angle = math.atan2(dy, dx) angles.append(angle) sorted_points = [p for _, p in sorted(zip(angles, points), reverse=True)] # 输出结果 for i, (x, y) in enumerate(sorted_points): print("顶点{}坐标: ({}, {})".format(i+1, x, y)) ``` --- ### **注意事项** 1. **阈值调节** 通过`img.binary([(low, high)])`调整二值化范围,确保五角星轮廓完整。 2. **多边形近似参数** `approx(5, epsilon=0.05)`中: - `5`为目标顶点数(需严格匹配五角星外轮廓)。 - `epsilon`控制近似精度(值越小,拟合越精确)。 3. **坐标系校正** OpenMV图像坐标系原点在左上角,若需物理坐标,需通过标定转换。 --- 通过上述步骤,可实现五角星拐点的顺时针识别与坐标输出。实际应用中需根据光照和五角星尺寸调整参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值