点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
相机校准的目的是找到相机的内在和外在参数。

总览
为了校准相机,我们对3D对象(例如图案立方体)成像,并使用3D对象与其2d图像之间的3D-2D点对应关系来查找相机参数。
我们需要找到两组参数:内在参数和外在参数。固有参数是摄像机内部的那些参数,例如焦距,主要点等,而固有参数是规定摄像机相对于摄像机的位置t(平移矢量)和方向R(旋转矩阵)的参数。外部坐标系(通常称为世界坐标系)。在第一部分中,我们将仅计算内部参数(假设外部参数是已知的),而在第二部分中,我们将共同计算内部参数和外部参数。
内部参数计算
我们使用的校准对象是魔方。
我们对立方体进行成像,如下图所示。然后,我们获得许多3D-2D点对应关系。在这一部分中,我们已经计算了点对应关系,您要做的就是从它们中计算出固有参数。3D-2D对应关系在数据文件“ pt_corres.mat”中给出。该文件包含“ pts_2D”,2D点和“ cam_pts_3D”以及所有对应的3D点。现
本文介绍了如何使用Python进行相机校准,包括计算内在参数(焦距、主点、偏斜参数)和外在参数(旋转矩阵、平移向量)。通过3D-2D点对应关系,利用直接线性变换(DLT)算法求解相机投影矩阵,并通过RQ分解获取K、R和t参数。最后,通过重新投影误差验证参数准确性。
最低0.47元/天 解锁文章
7458

被折叠的 条评论
为什么被折叠?



