在 Google Colab 中使用 OpenCV 进行图像处理简介

本文介绍了如何在 Google Colab 中使用 OpenCV 进行图像处理,包括从 URL 读取图像、显示图像、图像轮廓与直方图分析、灰度变换、傅立叶变换及边缘检测等步骤,旨在帮助机器学习和人工智能爱好者实践计算机视觉技术。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

在这篇文章中,我们将实现如何使用 OpenCV 在 google colaboratory 中进行图像处理。为此,我们应该了解一些 Python 基础知识,下面给出的步骤将帮助我们在 Google Colab 中使用 OpenCV 进行图像处理,这有助于机器学习人工智能。

图像处理的6个步骤:

步骤 1:加载依赖项

我们将加载一些必需的库,例如:Numpy, pandas, cv2, skimage, PIL and Matplotlib。在 Google colab 上加载依赖项:

import numpy as np
import pandas as pd
import cv2 as cv
from google.colab.patches import cv2_imshow    
from skimage import io
from PIL import Image
import matplotlib.pylab as plt

第 2 步:从 URL 读取图像

在这一步中,我们将从 URL 中读取图像,并在 google colab 中使用 OpenCV 显示它们,我们将使用以下代码来显示图像。

让我们在 Google colab 上尝试一下,这些是图像的 URL。

urls = ["https://iiif.lib.ncsu.edu/iiif/0052574/full/800,/0/default.jpg",
"https://iiif.lib.ncsu.edu/iiif/0016007/full/800,/0/default.jpg",
"https://placekitten.com/800/571"]
for url in urls:
image = io.imread(url)
image_2 = cv.cvtColor(image, cv.COLOR_BGR2RGB)
final_frame = cv.hconcat((image, image_2))
cv2_imshow(final_frame)
print('\n')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值